SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-523935"
 

Sökning: id:"swepub:oai:DiVA.org:uu-523935" > Novel Endpoints To ...

Novel Endpoints To Unravel Developmental Neurotoxicity : From DNA methylation responses to methylmercury to the in vitro identification of endocrine disruptors

Cediel-Ulloa, Andrea, 1989- (författare)
Uppsala universitet,Fysiologi och miljötoxikologi,The Epitox group
Rüegg, Joëlle, Professor (preses)
Uppsala universitet,Fysiologi och miljötoxikologi
Lein, Pamela J. (opponent)
 (creator_code:org_t)
ISBN 9789151320656
Uppsala : Acta Universitatis Upsaliensis, 2024
Engelska 76 s.
Serie: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 2374
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • The developing brain is especially sensitive to environmental stressors due to its dependence on the precise spatiotemporal regulation of multiple signals, and the long time period required for its formation. Some chemicals can interfere with molecular and cellular processes driving brain development, including epigenetic processes such as DNA methylation. Hence, identification of DNA methylation changes induced by chemical exposure may serve as early molecular markers for developmental neurotoxicity (DNT). Chemicals known as endocrine disruptors (EDCs) can produce adverse effects due to their capability to alter the endocrine system. Since brain development is highly dependent on endocrine signals, the potential adverse effects of EDCs on brain development needs to be addressed. Detection of DNT in the regulatory context has been based on in vivo testing, however, the financial costs and time intensive characteristics of these methods have resulted in a limited assessment of the DNT hazard of chemicals. In addition, in order to regulate EDCs, it is paramount to demonstrate that their adverse effects are a product of disruption of endocrine signals. Yet, at the moment, there are no approved methods which address both an endocrine mode of action and adverse neurodevelopmental outcomes. This doctoral thesis had two main aims: Firstly, to identify epigenetic changes, at the level of DNA methylation, underlying DNT induced by exposure to methylmercury (MeHg); and secondly, to develop new approach methods (NAMs) for the detection of DNT induced by endocrine disruption. Epigenetic effects were studied both in epidemiological data and experimentally in vitro. Associations between prenatal MeHg exposure and DNA methylation of GRIN2B and NR3C1 were found in children. In vitro validation of DNA methylation changes found in epigenome-wide association studies of populations exposed to MeHg, uncovered the potential involvement of the Mediator Complex Subunit 31 (MED31) in MeHg DNT. To contribute to the endocrine disruption (ED)-induced DNT field, the applicability of an in vitro model composed of murine neural progenitor cells (the C17.2 cell-line) was evaluated. We found that C17.2 neural differentiation and morphology were sensitive to retinoic acid (RAR), retinoic X (RXR), peroxisome proliferator-activated β/δ (PPARβ/δ), and glucocorticoid (GR) agonism. Furthermore, two out of 25 tested EDCs decreased neurite outgrowth and branching in the C17.2 system. These effects were recovered by co-exposure of the chemicals with antagonists of RAR, RXR, or PPARβ/δ, indicating that their DNT effect is mediated by hormonal disruption. Altogether, this thesis contributed to the development of new methodologies and endpoints for the assessment of DNT induced by MeHg and EDCs.  

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Farmakologi och toxikologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Pharmacology and Toxicology (hsv//eng)

Nyckelord

Developmental neurotoxicity
Methylmercury
DNA methylation
Endocrine disruptors
in vitro assay development
Biology with specialization in Environmental Toxicology
Biologi med inriktning mot miljötoxikologi

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy