SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:gup.ub.gu.se/149258"
 

Sökning: onr:"swepub:oai:gup.ub.gu.se/149258" > Asymptotics and dyn...

Asymptotics and dynamics in first-passage and continuum percolation

Ahlberg, Daniel, 1982 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper, matematisk statistik,Department of Mathematical Sciences, Mathematical Statistics,Chalmers tekniska högskola,Chalmers University of Technology,University of Gothenburg
 (creator_code:org_t)
ISBN 9789162883317
Göteborg : University of Gothenburg, 2011
Engelska.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • This thesis combines the study of asymptotic properties of percolation processes with various dynamical concepts. First-passage percolation is a model for the spatial propagation of a fluid on a discrete structure; the Shape Theorem describes its almost sure convergence towards an asymptotic shape, when considered on the square (or cubic) lattice. Asking how percolation structures are affected by simple dynamics or small perturbations presents a dynamical aspect. Such questions were previously studied for discrete processes; here, sensitivity to noise is studied in continuum percolation. Paper I studies first-passage percolation on certain 1-dimensional graphs. It is found that when identifying a suitable renewal sequence, its asymptotic behaviour is much better understood compared to higher dimensional cases. Several analogues of classical 1-dimensional limit theorems are derived. Paper II is dedicated to the Shape Theorem itself. It is shown that the convergence, apart from holding almost surely and in L^1, also holds completely. In addition, inspired by dynamical percolation and dynamical versions of classical limit theorems, the almost sure convergence is proved to be dynamically stable. Finally, a third generalization of the Shape Theorem shows that the above conclusions also hold for first-passage percolation on certain cone-like subgraphs of the lattice. Paper III proves that percolation crossings in the Poisson Boolean model, also known as the Gilbert disc model, are noise sensitive. The approach taken generalizes a method introduced by Benjamini, Kalai and Schramm. A key ingredient in the argument is an extremal result on arbitrary hypergraphs, which is used to show that almost no information about the critical process is obtained when conditioning on a denser Poisson process.

Ämnesord

NATURVETENSKAP  -- Matematik -- Annan matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Other Mathematics (hsv//eng)

Nyckelord

first-passage percolation
noise sensitivity
continuum percolation
Gilbert model
limit theorems
shape theorem
stopped random walks
large deviations
dynamical percolation
continuum percolation

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy