SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:gup.ub.gu.se/284100"
 

Search: id:"swepub:oai:gup.ub.gu.se/284100" > Mixing time for ran...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Mixing time for random walk on supercritical dynamical percolation

Peres, Y. (author)
Microsoft Research
Sousi, P. (author)
University Of Cambridge
Steif, Jeffrey, 1960 (author)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper,Department of Mathematical Sciences,University of Gothenburg,Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
2019-07-12
2020
English.
In: Probability Theory and Related Fields. - : Springer Science and Business Media LLC. - 0178-8051 .- 1432-2064. ; 176, s. 809-849
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We consider dynamical percolation on the d-dimensional discrete torus Znd of side length n, where each edge refreshes its status at rate μ= μn≤ 1 / 2 to be open with probability p. We study random walk on the torus, where the walker moves at rate 1/(2d) along each open edge. In earlier work of two of the authors with A. Stauffer, it was shown that in the subcritical case p< pc(Zd) , the (annealed) mixing time of the walk is Θ (n2/ μ) , and it was conjectured that in the supercritical case p> pc(Zd) , the mixing time is Θ (n2+ 1 / μ) ; here the implied constants depend only ond and p. We prove a quenched (and hence annealed) version of this conjecture up to a poly-logarithmic factor under the assumption θ(p) > 1 / 2. When θ(p) > 0 , we prove a version of this conjecture for an alternative notion of mixing time involving randomised stopping times. The latter implies sharp (up to poly-logarithmic factors) upper bounds on exit times of large balls throughout the supercritical regime. Our proofs are based on percolation results (e.g., the Grimmett–Marstrand Theorem) and an analysis of the volume-biased evolving set process; the key point is that typically, the evolving set has a substantial intersection with the giant percolation cluster at many times. This allows us to use precise isoperimetric properties of the cluster (due to G. Pete) to infer rapid growth of the evolving set, which in turn yields the upper bound on the mixing time. © 2019, The Author(s).

Subject headings

NATURVETENSKAP  -- Matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics (hsv//eng)
NATURVETENSKAP  -- Matematik -- Sannolikhetsteori och statistik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Probability Theory and Statistics (hsv//eng)

Keyword

Dynamical percolation
Mixing times
Random walk
Stopping times
stopping times.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Peres, Y.
Sousi, P.
Steif, Jeffrey, ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Mathematics
NATURAL SCIENCES
NATURAL SCIENCES
and Mathematics
and Probability Theo ...
Articles in the publication
Probability Theo ...
By the university
University of Gothenburg
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view