SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:gup.ub.gu.se/306603"
 

Sökning: id:"swepub:oai:gup.ub.gu.se/306603" > Coordinated changes...

Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation

Barile, M. (författare)
Imaz-Rosshandler, I. (författare)
Inzani, I. (författare)
visa fler...
Ghazanfar, S. (författare)
Nichols, J. (författare)
Marioni, J. C. (författare)
Guibentif, Carolina (författare)
Gothenburg University,Göteborgs universitet,Sahlgrenska Centrum för Cancerforskning (SCCR),Institutionen för biomedicin, avdelningen för mikrobiologi och immunologi,Sahlgrenska Center for Cancer Research (SCCR),Institute of Biomedicine, Department of Microbiology and Immunology
Gottgens, B. (författare)
visa färre...
 (creator_code:org_t)
2021-07-05
2021
Engelska.
Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1474-760X. ; 22:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Background Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. Results Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. Conclusions By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Cancer och onkologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Cancer and Oncology (hsv//eng)

Nyckelord

RNA velocity
Gastrulation
Erythropoiesis
Gata1
transcription factor gata-1
intron retention program
globin gene
down-syndrome
megakaryocyte
protein
cells
differentiation
identification
landscape
Biotechnology & Applied Microbiology
Genetics & Heredity

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy