SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:gup.ub.gu.se/334777"
 

Sökning: id:"swepub:oai:gup.ub.gu.se/334777" > Scaling behaviours ...

Scaling behaviours of deep learning and linear algorithms for the prediction of stroke severity

Bourached, Anthony (författare)
Harvard Medical School,University College London
Bonkhoff, Anna K. (författare)
Harvard Medical School
Schirmer, Markus D. (författare)
Harvard Medical School
visa fler...
Regenhardt, Robert W. (författare)
Harvard Medical School
Bretzner, Martin (författare)
Harvard Medical School
Hong, Sungmin (författare)
Harvard Medical School
Dalca, Adrian (författare)
Massachusetts General Hospital,Massachusetts Institute of Technology
Giese, Anne-Katrin (författare)
University Medical Center Hamburg-Eppendorf
Winzeck, Stefan (författare)
Massachusetts General Hospital,Imperial College London
Jern, Christina, 1962 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för biomedicin, avdelningen för laboratoriemedicin,Department of Laboratory Medicine,Sahlgrenska Academy,Sahlgrenska University Hospital
Lindgren, Arne G. (författare)
Lund University,Lunds universitet,Neurologi, Lund,Sektion IV,Institutionen för kliniska vetenskaper, Lund,Medicinska fakulteten,Klinisk strokeforskning,Forskargrupper vid Lunds universitet,Neurology, Lund,Section IV,Department of Clinical Sciences, Lund,Faculty of Medicine,Clinical Stroke Research Group,Lund University Research Groups,Skåne University Hospital
Maguire, Jane (författare)
University of Technology Sydney
Wu, Ona (författare)
Massachusetts General Hospital
Rhee, John (författare)
Massachusetts General Hospital
Kimchi, Eyal Y. (författare)
Northwestern University Feinberg School of Medicine
Rost, Natalia S. (författare)
Harvard Medical School
visa färre...
 (creator_code:org_t)
2023
2023
Engelska.
Ingår i: BRAIN COMMUNICATIONS. - 2632-1297. ; 6:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Deep learning has allowed for remarkable progress in many medical scenarios. Deep learning prediction models often require 105-107 examples. It is currently unknown whether deep learning can also enhance predictions of symptoms post-stroke in real-world samples of stroke patients that are often several magnitudes smaller. Such stroke outcome predictions however could be particularly instrumental in guiding acute clinical and rehabilitation care decisions. We here compared the capacities of classically used linear and novel deep learning algorithms in their prediction of stroke severity. Our analyses relied on a total of 1430 patients assembled from the MRI-Genetics Interface Exploration collaboration and a Massachusetts General Hospital-based study. The outcome of interest was National Institutes of Health Stroke Scale-based stroke severity in the acute phase after ischaemic stroke onset, which we predict by means of MRI-derived lesion location. We automatically derived lesion segmentations from diffusion-weighted clinical MRI scans, performed spatial normalization and included a principal component analysis step, retaining 95% of the variance of the original data. We then repeatedly separated a train, validation and test set to investigate the effects of sample size; we subsampled the train set to 100, 300 and 900 and trained the algorithms to predict the stroke severity score for each sample size with regularized linear regression and an eight-layered neural network. We selected hyperparameters on the validation set. We evaluated model performance based on the explained variance (R2) in the test set. While linear regression performed significantly better for a sample size of 100 patients, deep learning started to significantly outperform linear regression when trained on 900 patients. Average prediction performance improved by similar to 20% when increasing the sample size 9x [maximum for 100 patients: 0.279 +/- 0.005 (R2, 95% confidence interval), 900 patients: 0.337 +/- 0.006]. In summary, for sample sizes of 900 patients, deep learning showed a higher prediction performance than typically employed linear methods. These findings suggest the existence of non-linear relationships between lesion location and stroke severity that can be utilized for an improved prediction performance for larger sample sizes. Bourached et al. contrast linear and deep learning-based algorithms in their prediction performances of stroke severity depending on the training set sample sizes. They find that linear regression outperforms deep learning-based algorithms for smaller training samples comprising lesion location information of 100 patients, while deep learning excels in the case of larger samples (N = 900).

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Neurologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Neurology (hsv//eng)

Nyckelord

ischaemic stroke
stroke severity
prediction
deep learning
scaling behaviour

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy