SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:gup.ub.gu.se/47371"
 

Sökning: id:"swepub:oai:gup.ub.gu.se/47371" > Model of metastatic...

Model of metastatic growth valuable for radionuclide therapy

Bernhardt, Peter, 1966 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för särskilda specialiteter, Avdelningen för radiofysik,Institute of Selected Clinical Sciences, Department of Radiation Physics
Ahlman, Håkan, 1947 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för de kirurgiska disciplinerna, Avdelningen för kirurgi,Institute of Surgical Sciences, Department of Surgery
Forssell-Aronsson, Eva, 1961 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för särskilda specialiteter, Avdelningen för radiofysik,Institute of Selected Clinical Sciences, Department of Radiation Physics
 (creator_code:org_t)
2003
2003
Engelska.
Ingår i: Medical physics. - 0094-2405. ; 30:12, s. 3227-32
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The aim was to make a Monte Carlo simulation approach to estimate the distribution of tumor sizes and to study the curative potential of three candidate radionuclides for radionuclide therapy: the high-energy electron emitter 90Y, the medium-energy electron emitter 177Lu and the low-energy electron emitter 103mRh. A patient with hepatocellular carcinoma with recently published serial CT data on tumor growth in the liver was used. From these data the growth of the primary tumor, and the metastatis formation rate, were estimated. Assuming the same tumor growth of the primary and all metastases and the same metastatis formation rate from both primary and metastases the metastatic size distribution was simulated for various time points. Tumor cure of the metastatic size distribution was simulated for uniform activity distribution of three radionuclides; the high-energy electron emitter 90Y, the mean-energy electron emitter 177Lu and the low-energy electron emitter 103mRh. The simulation of a tumor cure was performed for various time points and tumor-to-normal tissue activity concentrations, TNC. It was demonstrated that it is important to start therapy as early as possible after diagnosis. It was of crucial importance to use an optimal radionuclide for therapy. These simulations demonstrated that 90Y was not suitable for systemic radionuclide therapy, due to the low absorbed fraction of the emitted electrons in small tumors (< 1 mg). If TNC was low 103mRh was slightly better than 177Lu. For high TNC values low-energy electron emitters, e.g., 103mRh was the best choice for tumor cure. However, the short half-life of 103mRh (56 min) might not be optimal for therapy. Therefore, other low-energy electron emitters, or alpha emitters, should be considered for systemic targeted therapy.

Nyckelord

Apoptosis/radiation effects
Carcinoma
Hepatocellular/pathology/*physiopathology/*radiotherapy/secondary
Cell Division/radiation effects
Computer Simulation
Dose-Response Relationship
Radiation
Humans
Liver Neoplasms/pathology/physiopathology/radiotherapy/secondary
Lutetium/therapeutic use
*Models
Biological
Neoplasm Staging/methods
Prognosis
Radioisotopes/*therapeutic use
Radiopharmaceuticals/therapeutic use
Radiotherapy Dosage
Radiotherapy Planning
Computer-Assisted/*methods
Radiotherapy
Computer-Assisted/*methods
Relative Biological Effectiveness
Rhodium/therapeutic use
Treatment Outcome
Yttrium Radioisotopes/therapeutic use

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy