SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:lup.lub.lu.se:15ca0e14-83f8-4618-af1c-6972c958ad92"
 

Sökning: onr:"swepub:oai:lup.lub.lu.se:15ca0e14-83f8-4618-af1c-6972c958ad92" > An energy-relaxatio...

An energy-relaxation-based framework for the modeling of magnetic shape memory alloys—Simulation of three-dimensional effects under homogeneous loading conditions

Bartel, Thorsten (författare)
Technical University of Dortmund
Kiefer, Bjoern (författare)
Freiberg University of Mining and Technology
Menzel, Andreas (författare)
Lund University,Lunds universitet,Hållfasthetslära,Institutionen för byggvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Solid Mechanics,Department of Construction Sciences,Departments at LTH,Faculty of Engineering, LTH,Technical University of Dortmund
 (creator_code:org_t)
Elsevier BV, 2021
2021
Engelska 14 s.
Ingår i: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683. ; 208-209, s. 221-234
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • It is known from experimental findings that three-dimensional effects can have a strong influence on magnetic shape memory behavior. Such phenomena are, however, often neglected in MSMA constitutive models, as they only become meaningful under complex loading conditions. The extensions of our original modeling framework, cf. Bartel et al. (2020), to include 3D-effects is threefold: (i) vector-valued microstructural variables are now elements in R3, i.e. no longer parameterizable in polar coordinates, (ii) a third tetragonal martensite variant may form/vanish by switching from/back into both other variants, and (iii) a more general and robust algorithmic treatment is necessary. The latter includes the implementation of a staggered Augmented Lagrangian scheme to handle the now much larger and numerically more advanced sets of equality and inequality constraints. In this context, two extended model formulations are presented. The first considers a first-order, two-variant laminate approach (rank-one convexification), in which domain magnetizations, interface orientations etc. are now three-dimensional vectors. The second model is based on a convexification approach, for which the incorporation of the third martensitic variant is quite natural. Numerical examples are investigated to test the generalized modeling framework. Firstly, it is confirmed that both extended models recover the solution of the previously established two-dimensional model for a simple loading case. Secondly, response predictions for more complex loading scenarios (non-proportional bi-axial stresses, orthogonal magnetic field), motivated by experiments, are investigated. It is found that capturing the formation, elimination and mutual interaction of all martensitic variants as well as general three-dimensional magnetization vector orientations is of key importance under these conditions. The extended convexification model and modified algorithmic formulation are shown to reliably handle even such general cases.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Nyckelord

Constitutive modeling
Magnetic shape memory alloys
Magnetomechanical coupling
Micromagnetics
Micromechanics
Three-dimensional model formulation

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Bartel, Thorsten
Kiefer, Bjoern
Menzel, Andreas
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Materialteknik
och Metallurgi och m ...
Artiklar i publikationen
International Jo ...
Av lärosätet
Lunds universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy