SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:lup.lub.lu.se:3921bab9-d526-4b1c-897f-1cc38a5b78d5"
 

Sökning: id:"swepub:oai:lup.lub.lu.se:3921bab9-d526-4b1c-897f-1cc38a5b78d5" > Nonlinear stiffness...

Nonlinear stiffness optimization with prescribed deformed geometry and loads

Fan, Zhirui (författare)
Dalian University of Technology
Yan, Jun (författare)
Dalian University of Technology
Wallin, Mathias (författare)
Lund University,Lunds universitet,Hållfasthetslära,Institutionen för byggvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Solid Mechanics,Department of Construction Sciences,Departments at LTH,Faculty of Engineering, LTH
visa fler...
Ristinmaa, Matti (författare)
Lund University,Lunds universitet,Hållfasthetslära,Institutionen för byggvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Solid Mechanics,Department of Construction Sciences,Departments at LTH,Faculty of Engineering, LTH
Niu, Bin (författare)
Dalian University of Technology
Mooney, Sean (författare)
Lund University
Zhao, Guozhong (författare)
Dalian University of Technology
visa färre...
 (creator_code:org_t)
2022-01-29
2022
Engelska.
Ingår i: Structural and Multidisciplinary Optimization. - : Springer Science and Business Media LLC. - 1615-147X .- 1615-1488. ; 65:2
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Optimization based on traditional forward motion analysis to ensure a prescribed load distribution on a deformed geometry is challenging, since the load distribution is highly coupled to the deformed geometry, boundary conditions, and the optimized material layout. In contrast to traditional forward motion analysis, the deformed configuration is prescribed in the inverse motion analysis, and the undeformed configuration is the outcome of the analysis. Consequently, the inverse motion analysis is able to define an exact deformed geometry. In the present study, we make use of this key advantage to design structures with both an exact deformed geometry and a prescribed load distribution. The objective in the optimization is to minimize a general function of the nodal displacement vector. To formulate a well-posed optimization problem, the design is regularized using the partial differential equation filter and the sensitivity analysis is based on the adjoint method. The computational model is developed for neo-Hookean hyper-elasticity and the balance equations are discretized using the finite element method. The resulting nonlinear equations are solved using a conventional Newton–Raphson scheme. In the numerical examples, a cantilever beam with an embedded perfect circular shape is first considered. Next, a 2D gasket-like structure is designed, and finally, we consider a 3D structure with contact-like boundary conditions. In these examples, the prescribed deformed geometry is subject to a distributed external force. The examples show that the deformed geometry and load distribution can be exactly prescribed through stiffness optimization based on the inverse motion analysis.

Ämnesord

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)

Nyckelord

Finite strain
Geometric control
Inverse motion
Load distribution
Nonlinear finite element analysis
Topology optimization

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy