SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:lup.lub.lu.se:45f0998c-3d27-4229-97ab-76167edaa8f3"
 

Sökning: id:"swepub:oai:lup.lub.lu.se:45f0998c-3d27-4229-97ab-76167edaa8f3" > Voxel-Wise Brain Gr...

Voxel-Wise Brain Graphs From Diffusion MRI : Intrinsic Eigenspace Dimensionality and Application to Functional MRI

Behjat, Hamid (författare)
Swiss Federal Institute of Technology
Tarun, Anjali (författare)
Swiss Federal Institute of Technology
Abramian, David (författare)
Linköping University
visa fler...
Larsson, Martin (författare)
Lund University,Lunds universitet,Matematik LTH,Matematikcentrum,Institutioner vid LTH,Lunds Tekniska Högskola,Mathematics (Faculty of Engineering),Centre for Mathematical Sciences,Departments at LTH,Faculty of Engineering, LTH
Ville, Dimitri Van De (författare)
Swiss Federal Institute of Technology
visa färre...
 (creator_code:org_t)
Engelska 12 s.
Ingår i: IEEE Open Journal of Engineering in Medicine and Biology. - 2644-1276. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Annan medicinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Other Medical Engineering (hsv//eng)

Nyckelord

Brain
Brain graph
diffusion MRI
Diffusion tensor imaging
Eigenvalues and eigenfunctions
Functional magnetic resonance imaging
functional MRI
graph signal processing
Laplace equations
spectral graph theory
Task analysis
Tensors

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy