SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:lup.lub.lu.se:8060883f-d47c-402d-bdae-61eadb922260"
 

Sökning: id:"swepub:oai:lup.lub.lu.se:8060883f-d47c-402d-bdae-61eadb922260" > Integration of part...

Integration of particle-gas systems with stiff mutual drag interaction

Yang, Chao Chin (författare)
Lund University,Lunds universitet,Astronomi - Genomgår omorganisation,Institutionen för astronomi och teoretisk fysik - Genomgår omorganisation,Naturvetenskapliga fakulteten,Lund Observatory - Undergoing reorganization,Department of Astronomy and Theoretical Physics - Undergoing reorganization,Faculty of Science
Johansen, Anders (författare)
Lund University,Lunds universitet,Astronomi - Genomgår omorganisation,Institutionen för astronomi och teoretisk fysik - Genomgår omorganisation,Naturvetenskapliga fakulteten,Lund Observatory - Undergoing reorganization,Department of Astronomy and Theoretical Physics - Undergoing reorganization,Faculty of Science
 (creator_code:org_t)
2016-06-17
2016
Engelska.
Ingår i: The Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 224:2
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Numerical simulation of numerous mm/cm-sized particles embedded in a gaseous disk has become an important tool in the study of planet formation and in understanding the dust distribution in observed protoplanetary disks. However, the mutual drag force between the gas and the particles can become so stiff - particularly because of small particles and/or strong local solid concentration - that an explicit integration of this system is computationally formidable. In this work, we consider the integration of the mutual drag force in a system of Eulerian gas and Lagrangian solid particles. Despite the entanglement between the gas and the particles under the particle-mesh construct, we are able to devise a numerical algorithm that effectively decomposes the globally coupled system of equations for the mutual drag force, and makes it possible to integrate this system on a cell-by-cell basis, which considerably reduces the computational task required. We use an analytical solution for the temporal evolution of each cell to relieve the time-step constraint posed by the mutual drag force, as well as to achieve the highest degree of accuracy. To validate our algorithm, we use an extensive suite of benchmarks with known solutions in one, two, and three dimensions, including the linear growth and the nonlinear saturation of the streaming instability. We demonstrate numerical convergence and satisfactory consistency in all cases. Our algorithm can, for example, be applied to model the evolution of the streaming instability with mm/cm-sized pebbles at high mass loading, which has important consequences for the formation scenarios of planetesimals.

Ämnesord

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Nyckelord

hydrodynamics
instabilities
methods: numerical
planets and satellites: formation
protoplanetary disks
turbulence

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Yang, Chao Chin
Johansen, Anders
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
och Astronomi astrof ...
Artiklar i publikationen
The Astrophysica ...
Av lärosätet
Lunds universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy