SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:lup.lub.lu.se:8a655f81-65c6-41a0-b584-9557f0fed7d5"
 

Sökning: id:"swepub:oai:lup.lub.lu.se:8a655f81-65c6-41a0-b584-9557f0fed7d5" > Crack propagation i...

Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling

Orozco, Gustavo A. (författare)
Lund University,Lunds universitet,Avdelningen för Biomedicinsk teknik,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH
Tanska, Petri (författare)
University of Eastern Finland
Gustafsson, Anna (författare)
Lund University,Lunds universitet,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH
visa fler...
Korhonen, Rami K. (författare)
University of Eastern Finland
Isaksson, Hanna (författare)
Lund University,Lunds universitet,Avdelningen för Biomedicinsk teknik,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,LTH profilområde: Teknik för hälsa,LTH profilområden,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH,LTH Profile Area: Engineering Health,LTH Profile areas,Faculty of Engineering, LTH
visa färre...
 (creator_code:org_t)
Elsevier BV, 2022
2022
Engelska.
Ingår i: Journal of the Mechanical Behavior of Biomedical Materials. - : Elsevier BV. - 1751-6161. ; 131
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Severe joint injuries often involve cartilage defects that propagate after mechanical loading. The propagation of these lesions may contribute to the development of post-traumatic osteoarthritis (PTOA). However, the mechanisms behind their propagation remain unknown. Currently, no numerical predictive methods exist for estimating crack propagation in cartilage under cyclic loading, yet they would provide essential insights into crack growth in injured tissue after trauma. Here, we present a numerical approach to estimate crack propagation in articular cartilage under cyclic loading using a cohesive damage model. Four different material models for cartilage (hyperelastic, poro-hyperelastic, poro-hyper-viscoelastic, and fibril-reinforced poro-hyperelastic (FRPHE) with different collagen orientations) were implemented. Our numerical cohesive damage model was able to replicate the experimental crack length reported in the literature, showing greater crack length with an increasing number of loading cycles. Damage initiation stress (4.35–4.73 MPa) and fracture energy (0.97–1.55 N/mm) values obtained for the poro-hyperelastic, poro-hyper-viscoelastic, and parallel-FRPHE models were within the range of what has been reported previously. The crack growth predictions obtained by the FRPHE models showed the influence of anisotropy of the fibrillar matrix on the cartilage response. Our results indicate that our cohesive damage model could potentially be used to estimate the adverse conditions in injured soft tissue such as osteochondral lesions, menisci tears, or partial ligament ruptures under (ab)normal biomechanical scenarios.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Medicinsk bioteknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Medical Biotechnology (hsv//eng)

Nyckelord

Cohesive zone model
Fracture energy
Articular cartilage
Cyclic loading
Damage progression

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy