SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:c4c6cfaa-1189-45c1-85c1-ac87ac160fb3"
 

Search: id:"swepub:oai:lup.lub.lu.se:c4c6cfaa-1189-45c1-85c1-ac87ac160fb3" > A model of how dept...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

A model of how depth facilitates scene-relative object motion perception

Layton, Oliver W (author)
Colby College
Niehorster, D C (author)
Lund University,Lunds universitet,Humanistlaboratoriet,Fakultetsgemensamma verksamheter,Humanistiska och teologiska fakulteterna,Institutionen för psykologi,Samhällsvetenskapliga institutioner och centrumbildningar,Samhällsvetenskapliga fakulteten,Lund University Humanities Lab,Units,Joint Faculties of Humanities and Theology,Department of Psychology,Departments of Administrative, Economic and Social Sciences,Faculty of Social Sciences
 (creator_code:org_t)
2019-11-14
2019
English.
In: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-7358. ; 15:11
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Many everyday interactions with moving objects benefit from an accurate perception of their movement. Self-motion, however, complicates object motion perception because it generates a global pattern of motion on the observer's retina and radically influences an object's retinal motion. There is strong evidence that the brain compensates by suppressing the retinal motion due to self-motion, however, this requires estimates of depth relative to the object-otherwise the appropriate self-motion component to remove cannot be determined. The underlying neural mechanisms are unknown, but neurons in brain areas MT and MST may contribute given their sensitivity to motion parallax and depth through joint direction, speed, and disparity tuning. We developed a neural model to investigate whether cells in areas MT and MST with well-established neurophysiological properties can account for human object motion judgments during self-motion. We tested the model by comparing simulated object motion signals to human object motion judgments in environments with monocular, binocular, and ambiguous depth. Our simulations show how precise depth information, such as that from binocular disparity, may improve estimates of the retinal motion pattern due the self-motion through increased selectivity among units that respond to the global self-motion pattern. The enhanced self-motion estimates emerged from recurrent feedback connections in MST and allowed the model to better suppress the appropriate direction, speed, and disparity signals from the object's retinal motion, improving the accuracy of the object's movement direction represented by motion signals.

Subject headings

SAMHÄLLSVETENSKAP  -- Psykologi -- Psykologi (hsv//swe)
SOCIAL SCIENCES  -- Psychology -- Psychology (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Layton, Oliver W
Niehorster, D C
About the subject
SOCIAL SCIENCES
SOCIAL SCIENCES
and Psychology
and Psychology
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Bioinformatics
Articles in the publication
PLoS Computation ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view