SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:lup.lub.lu.se:d6cc36c2-33e6-4d05-9e41-606aff31aca0"
 

Sökning: id:"swepub:oai:lup.lub.lu.se:d6cc36c2-33e6-4d05-9e41-606aff31aca0" > Anisotropic density...

Anisotropic density growth of bone-A computational micro-sphere approach

Waffenschmidt, Tobias (författare)
Menzel, Andreas (författare)
Lund University,Lunds universitet,Hållfasthetslära,Institutionen för byggvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Solid Mechanics,Department of Construction Sciences,Departments at LTH,Faculty of Engineering, LTH
Kuhl, Ellen (författare)
 (creator_code:org_t)
Elsevier BV, 2012
2012
Engelska.
Ingår i: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683. ; 49:14, s. 1928-1946
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Bones are able to adapt their local density when exposed to mechanical loading. Such growth processes result in densification of the bone in regions of high loading levels and in resorption of the material in regions of low loading levels. This evolution and optimisation process generates heterogeneous distributions of bone density accompanied by pronounced anisotropic mechanical properties. While several constitutive models reported in the literature assume the growth process to be purely isotropic, only few studies focus on the modelling and simulation of anisotropic functional adaptation we can observe in vivo. Some of these few computational models for anisotropic growth characterise the evolution of anisotropy by analogy to anisotropic continuum damage mechanics while others include anisotropic growth but assume isotropic elastic properties. The objective of this work is to generalise a well-established framework of energy-driven isotropic functional adaptation to anisotropic microstructural growth and density evolution. We adopt the so-called micro-sphere concept, which proves to be extremely versatile and flexible to extend sophisticated one-dimensional constitutive relations to the three-dimensional case. In this work we apply this framework to the modelling and simulation of anisotropic functional adaptation by means of a directional density distribution, which evolves in time and in response to the mechanical loading condition. Several numerical studies highlight the characteristics and properties of the anisotropic growth model we establish. The formulation is embedded into an iterative finite element algorithm to solve complex boundary value problems. In particular, we consider the finite-element-simulation of a subject-specific proximal tibia bone and a comparison to experimental measurements. The proposed model is able to appropriately represent the heterogeneous bone density distribution. As an advantage over several other computational growth models proposed in the literature, a pronounced local anisotropy evolution is identified and illustrated by means of orientation-distribution-type density plots. (C) 2012 Elsevier Ltd. All rights reserved.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering (hsv//eng)

Nyckelord

Adaptation
Remodelling
Anisotropic growth
Micro-sphere
Finite
element method

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Waffenschmidt, T ...
Menzel, Andreas
Kuhl, Ellen
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Maskinteknik
Artiklar i publikationen
International Jo ...
Av lärosätet
Lunds universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy