SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:lup.lub.lu.se:e49c3682-edda-4493-8c46-2438e628114a"
 

Sökning: id:"swepub:oai:lup.lub.lu.se:e49c3682-edda-4493-8c46-2438e628114a" > Protein nanoribbons...

Protein nanoribbons template enamel mineralization

Bai, Yushi (författare)
University of California, San Francisco
Yu, Zanlin (författare)
University of California, San Francisco
Ackerman, Larry (författare)
University of California, San Francisco
visa fler...
Zhang, Yan (författare)
University of California, San Francisco
Bonde, Johan (författare)
Lund University,Lunds universitet,Tillämpad biokemi,Centrum för tillämpade biovetenskaper,Kemiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Pure and Applied Biochemistry,Center for Applied Life Sciences,Department of Chemistry,Departments at LTH,Faculty of Engineering, LTH
Li, Wu (författare)
University of California, San Francisco
Cheng, Yifan (författare)
University of California, San Francisco
Habelitz, Stefan (författare)
University of California, San Francisco
visa färre...
 (creator_code:org_t)
2020-07-31
2020
Engelska 8 s.
Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 117:32, s. 19201-19208
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • As the hardest tissue formed by vertebrates, enamel represents nature's engineering masterpiece with complex organizations of fibrous apatite crystals at the nanometer scale. Supramolecular assemblies of enamel matrix proteins (EMPs) play a key role as the structural scaffolds for regulating mineral morphology during enamel development. However, to achieve maximum tissue hardness, most organic content in enamel is digested and removed at the maturation stage, and thus knowledge of a structural protein template that could guide enamel mineralization is limited at this date. Herein, by examining a gene-modified mouse that lacked enzymatic degradation of EMPs, we demonstrate the presence of protein nanoribbons as the structural scaffolds in developing enamel matrix. Using in vitro mineralization assays we showed that both recombinant and enamel-tissue-based amelogenin nanoribbons are capable of guiding fibrous apatite nanocrystal formation. In accordance with our understanding of the natural process of enamel formation, templated crystal growth was achieved by interaction of amelogenin scaffolds with acidic macromolecules that facilitate the formation of an amorphous calcium phosphate precursor which gradually transforms into oriented apatite fibers along the protein nanoribbons. Furthermore, this study elucidated that matrix metalloproteinase-20 is a critical regulator of the enamel mineralization as only a recombinant analog of a MMP20-cleavage product of amelogenin was capable of guiding apatite mineralization. This study highlights that supramolecular assembly of the scaffold protein, its enzymatic processing, and its ability to interact with acidic carrier proteins are critical steps for proper enamel development.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Odontologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Dentistry (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Fysiologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Physiology (hsv//eng)

Nyckelord

biomineralization
enamel
hydroxyapatite
nanoribbon structure
protein assembly

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy