SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:21757388-25b4-4769-bd29-6c11a13aa85b"
 

Sökning: id:"swepub:oai:research.chalmers.se:21757388-25b4-4769-bd29-6c11a13aa85b" > Structural water st...

Structural water stabilizes protein motifs in liquid protein phase: The folding mechanism of short β-sheets coupled to phase transition

Papp, Dóra (författare)
University of Szeged,University of Szeged / Szegedi Tudományegyetem,Eötvös Loránd University (ELTE)
Szigyártó, Imola Cs (författare)
Magyar Tudomanyos Akademia,Hungarian Academy of Sciences
Nordén, Bengt, 1945 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Perczel, András (författare)
Eötvös Loránd University (ELTE)
Beke-Somfai, Tamas, 1977 (författare)
Magyar Tudomanyos Akademia,Hungarian Academy of Sciences
visa färre...
 (creator_code:org_t)
2021-08-10
2021
Engelska.
Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:16
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Macromolecular associates, such as membraneless organelles or lipid-protein assemblies, provide a hydrophobic environment, i.e., a liquid protein phase (LP), where folding preferences can be drastically altered. LP as well as the associated phase change from water (W) is an intriguing phenomenon related to numerous biological processes and also possesses potential in nanotechnological applications. However, the energetic effects of a hydrophobic yet water-containing environment on protein folding are poorly understood. Here, we focus on small β-sheets, the key motifs of proteins, undergoing structural changes in liquid–liquid phase separation (LLPS) and also model the mechanism of energy-coupled unfolding, e.g., in proteases, during W → LP transition. Due to the importance of the accurate description for hydrogen bonding patterns, the employed models were studied by using quantum mechanical calculations. The results demonstrate that unfolding is energetically less favored in LP by ~0.3–0.5 kcal·mol−1 per residue in which the difference further increased by the presence of explicit structural water molecules, where the folded state was preferred by ~1.2–2.3 kcal·mol−1 per residue relative to that in W. Energetics at the LP/W interfaces was also addressed by theoretical isodesmic reactions. While the models predict folded state preference in LP, the unfolding from LP to W renders the process highly favorable since the unfolded end state has >1 kcal·mol−1 per residue excess stabilization.

Ämnesord

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)
NATURVETENSKAP  -- Kemi -- Teoretisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Theoretical Chemistry (hsv//eng)

Nyckelord

Liquid–liquid phase separation
Quantum mechanics
Membraneless organelles
Protein folding/unfolding

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy