SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:3db2a91f-2d04-487d-be6c-d00815b132dd"
 

Sökning: id:"swepub:oai:research.chalmers.se:3db2a91f-2d04-487d-be6c-d00815b132dd" > A discrete dipole a...

A discrete dipole approximation solver based on the COCG-FFT algorithm and its application to microwave breast imaging

Hosseinzadegan, Samar, 1987 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Fhager, Andreas, 1976 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Persson, Mikael, 1959 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Meaney, Paul M, 1960 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Costanzo, Sandra (författare)
Università della Calabria,University of Calabria
visa färre...
 (creator_code:org_t)
Hindawi Limited, 2019
2019
Engelska.
Ingår i: International Journal of Antennas and Propagation. - : Hindawi Limited. - 1687-5869 .- 1687-5877. ; 2019
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We introduce the discrete dipole approximation (DDA) for efficiently calculating the two-dimensional electric field distribution for our microwave tomographic breast imaging system. For iterative inverse problems such as microwave tomography, the forward field computation is the time limiting step. In this paper, the two-dimensional algorithm is derived and formulated such that the iterative conjugate orthogonal conjugate gradient (COCG) method can be used for efficiently solving the forward problem. We have also optimized the matrix-vector multiplication step by formulating the problem such that the nondiagonal portion of the matrix used to compute the dipole moments is block-Toeplitz. The computation costs for multiplying the block matrices times a vector can be dramatically accelerated by expanding each Toeplitz matrix to a circulant matrix for which the convolution theorem is applied for fast computation utilizing the fast Fourier transform (FFT). The results demonstrate that this formulation is accurate and efficient. In this work, the computation times for the direct solvers, the iterative solver (COCG), and the iterative solver using the fast Fourier transform (COCG-FFT) are compared with the best performance achieved using the iterative solver (COCG-FFT) in C++. Utilizing this formulation provides a computationally efficient building block for developing a low cost and fast breast imaging system to serve under-resourced populations.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datorteknik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Engineering (hsv//eng)
NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Reglerteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Control Engineering (hsv//eng)

Nyckelord

Computational efficiency
Computation theory
Conjugate gradient method
Electric fields
Approximation algorithms

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy