SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:414883cf-3e10-412c-b03d-6fcbae730018"
 

Sökning: id:"swepub:oai:research.chalmers.se:414883cf-3e10-412c-b03d-6fcbae730018" > Analyte transport t...

Analyte transport to micro-and nano-plasmonic structures

Lynn, N. Scott (författare)
Czech Academy of Sciences
Špringer, Tomáš (författare)
Czech Academy of Sciences
Slabý, Jiří (författare)
Czech Academy of Sciences
visa fler...
Spackova, Barbora, 1979 (författare)
Czech Academy of Sciences
Gráfová, Michaela (författare)
Center for Nanotechnology Innovation (CNI),Czech Academy of Sciences
Ermini, Maria Laura (författare)
Czech Academy of Sciences
Homola, Jiří (författare)
Czech Academy of Sciences
visa färre...
 (creator_code:org_t)
2019
2019
Engelska.
Ingår i: Lab on a Chip - Miniaturisation for Chemistry and Biology. - : Royal Society of Chemistry (RSC). - 1473-0189 .- 1473-0197. ; 19:24, s. 4117-4127
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The study of optical affinity biosensors based on plasmonic nanostructures has received significant attention in recent years. The sensing surfaces of these biosensors have complex architectures, often composed of localized regions of high sensitivity (electromagnetic hot spots) dispersed along a dielectric substrate having little to no sensitivity. Under conditions such that the sensitive regions are selectively functionalized and the remaining regions passivated, the rate of analyte capture (and thus the sensing performance) will have a strong dependence on the nanoplasmonic architecture. Outside of a few recent studies, there has been little discussion on how changes to a nanoplasmonic architecture will affect the rate of analyte transport. We recently proposed an analytical model to predict transport to such complex architectures; however, those results were based on numerical simulation and to date, have only been partially verified. In this study we measure the characteristics of analyte transport across a wide range of plasmonic structures, varying both in the composition of their base plasmonic element (microwires, nanodisks, and nanorods) and the packing density of such elements. We functionalized each structure with nucleic acid-based bioreceptors, where for each structure we used analyte/receptor sequences as to maintain a Damköhler number close to unity. This method allows to extract both kinetic (in the form of association and dissociation constants) and analyte transport parameters (in the form of a mass transfer coefficient) from sensorgrams taken from each substrate. We show that, despite having large differences in optical characteristics, measured rates of analyte transport for all plasmonic structures match very well to predictions using our previously proposed model. These results highlight that, along with optical characteristics, analyte transport plays a large role in the overall sensing performance of a nanoplasmonic biosensor.

Ämnesord

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy