SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:52e17974-de48-44a4-830e-3eeffb3d24aa"
 

Sökning: id:"swepub:oai:research.chalmers.se:52e17974-de48-44a4-830e-3eeffb3d24aa" > Yeast optimizes met...

Yeast optimizes metal utilization based on metabolic network and enzyme kinetics

Chen, Yu, 1990 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Li, Feiran, 1993 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Mao, Jiwei, 1990 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Chen, Yun, 1978 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Nielsen, Jens B, 1962 (författare)
BioInnovation Institute (BII),Chalmers tekniska högskola,Chalmers University of Technology,Danmarks Tekniske Universitet,Technical University of Denmark
visa färre...
 (creator_code:org_t)
2021-03-15
2021
Engelska.
Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:12
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Metal ions are vital to metabolism, as they can act as cofactors on enzymes and thus modulate individual enzymatic reactions. Although many enzymes have been reported to interact with metal ions, the quantitative relationships between metal ions and metabolism are lacking. Here, we reconstructed a genome-scale metabolic model of the yeast Saccharomyces cerevisiae to account for proteome constraints and enzyme cofactors such as metal ions, named CofactorYeast. The model is able to estimate abundances of metal ions binding on enzymes in cells under various conditions, which are comparable to measured metal ion contents in biomass. In addition, the model predicts distinct metabolic flux distributions in response to reduced levels of various metal ions in the medium. Specifically, the model reproduces changes upon iron deficiency in metabolic and gene expression levels, which could be interpreted by optimization principles (i.e., yeast optimizes iron utilization based on metabolic network and enzyme kinetics rather than preferentially targeting iron to specific enzymes or pathways). At last, we show the potential of using the model for understanding cell factories that harbor heterologous iron-containing enzymes to synthesize high-value compounds such as p-coumaric acid. Overall, the model demonstrates the dependence of enzymes on metal ions and links metal ions to metabolism on a genome scale.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Farmaceutiska vetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Pharmaceutical Sciences (hsv//eng)
NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Andra medicinska och farmaceutiska grundvetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Other Basic Medicine (hsv//eng)

Nyckelord

Metabolic engineering
Resource allocation
Saccharomyces cerevisiae
Proteome constraint
Constraint-based model

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy