SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:7cc82901-bc55-4656-b83b-e0a4cdbae17a"
 

Sökning: id:"swepub:oai:research.chalmers.se:7cc82901-bc55-4656-b83b-e0a4cdbae17a" > European roadmap on...

European roadmap on superconductive electronics - Status and perspectives

Anders, S. (författare)
Leibniz-Institut Für Photonische Technologien E.V.
Blamire, M. G. (författare)
University Of Cambridge
Buchholz, F. I. (författare)
Physikalisch-Technische Bundesanstalt (PTB)
visa fler...
Crete, D. G. (författare)
Thales Group
Cristiano, R. (författare)
Febvre, P. (författare)
Université Savoie Mont Blanc,Savoie Mont Blanc University
Fritzsch, L. (författare)
Leibniz-Institut Für Photonische Technologien E.V.
Yurievna Herr, Anna, 1969 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Il'Ichev, E. (författare)
Leibniz-Institut Für Photonische Technologien E.V.
Kohlmann, J. (författare)
Physikalisch-Technische Bundesanstalt (PTB)
Kunert, J. (författare)
Leibniz-Institut Für Photonische Technologien E.V.
Meyer, H. G. (författare)
Leibniz-Institut Für Photonische Technologien E.V.
Niemeyer, J. (författare)
Physikalisch-Technische Bundesanstalt (PTB)
Ortlepp, T. (författare)
Technische Universität Ilmenau
Rogalla, H. (författare)
Universiteit Twente,University of Twente
Schurig, T. (författare)
Physikalisch-Technische Bundesanstalt (PTB)
Siegel, M. (författare)
Karlsruher Institut für Technologie (KIT),Karlsruhe Institute of Technology (KIT)
Stolz, R. (författare)
Leibniz-Institut Für Photonische Technologien E.V.
Tarte, E. (författare)
University of Birmingham
Ter Brake, H. J. M. (författare)
Universiteit Twente,University of Twente
Toepfer, H. (författare)
IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH,Technische Universität Ilmenau
Villegier, J. C. (författare)
Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA),The French Alternative Energies and Atomic Energy Commission (CEA)
Zagoskin, A. M. (författare)
Loughborough University
Zorin, A. B. (författare)
Physikalisch-Technische Bundesanstalt (PTB)
visa färre...
Leibniz-Institut Für Photonische Technologien EV. University Of Cambridge (creator_code:org_t)
Elsevier BV, 2010
2010
Engelska.
Ingår i: Physica C: Superconductivity and its Applications. - : Elsevier BV. - 0921-4534. ; 470:23-24, s. 2079-2126
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • For four decades semiconductor electronics has followed Moore's law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 mu W per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Phi(0). The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit 'Volt' is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals. SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by 'transition-edge' bolo-meters, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: - Ultra-sensitive sensing and imaging. - Quantum measurement instrumentation. - Advanced analogue-to-digital converters. - Superconductive electronics technology.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

high-resolution
double-junction stacks
josephson voltage standard
digital signal
Strategy map
SQUID
processor
Detector
fabrication process
crystal nbn films
single-photon detectors
RSFQ
Electronic applications
Superconducting devices
tunnel-junctions
transition-edge sensors
flux-quantum circuits

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy