SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:research.chalmers.se:adab0c7a-0e8c-46df-a37d-3be6c0befa46"
 

Search: id:"swepub:oai:research.chalmers.se:adab0c7a-0e8c-46df-a37d-3be6c0befa46" > Joint Superchannel ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Joint Superchannel Digital Signal Processing for Effective Inter-Channel Interference Cancellation

Mazur, Mikael, 1990 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Schröder, Jochen, 1976 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Karlsson, Magnus, 1967 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Andrekson, Peter, 1960 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2020
2020
English.
In: Journal of Lightwave Technology. - 0733-8724 .- 1558-2213. ; 38:20, s. 5676-5684
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Modern optical communication systems transmit multiple frequency channels, each operating very close to its theoretical limit. The total bandwidth can reach 10 THz limited by the optical amplifiers. Maximizing spectral efficiency, the throughput per bandwidth is thus crucial. Replacing independent lasers with an optical frequency comb can enable very dense packing by overcoming relative drifts. However, to date, interference from non-ideal spectral shaping prevents exploiting the full potential of frequency combs. Here, we demonstrate comb-enabled multi-channel digital signal processing, which overcomes these limitations. Each channel is detected using an independent coherent receiver and processed at two samples-per-symbol. By accounting for the unique comb stability and exploiting aliasing in the design of the dynamic equalizer, we show that the optimal spectral shape changes, resulting in a higher signal-to-noise ratio that pushes the optimal symbol rate towards and even above the channel spacing, resulting in the first example of frequency-domain super-Nyquist transmission with multi-channel detection for optical systems. The scheme is verified both in back-to-back configuration and in single span transmission of a 21 channel superchannel originating from a 25 GHz-spaced frequency comb. By jointly processing three wavelength channels at a time, we achieve spectral efficiency beyond what is possible with independent channels. At the same time, one significantly relaxes the hardware requirements on digital-to-analog resolution and bandwidth, as well as filter tap numbers. Our results show that comb-enabled multi-channel processing can overcome the limitations of classical dense wavelength division multiplexing systems, enabling tighter spacing to make better use of the available spectrum in optical communications.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Telekommunikation (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Telecommunications (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Kommunikationssystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Communication Systems (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Signalbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Signal Processing (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view