SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:aef53a69-a0db-4e85-8fb1-8fc16ffdef34"
 

Sökning: id:"swepub:oai:research.chalmers.se:aef53a69-a0db-4e85-8fb1-8fc16ffdef34" > Microstructure-depe...

Microstructure-dependent deformation behaviour of a low γ′ volume fraction Ni-base superalloy studied by in-situ neutron diffraction

Jaladurgam, Nitesh Raj, 1993 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Li, Hongjia, 1985 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Kelleher, Joe (författare)
visa fler...
Persson, Christer, 1960 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Steuwer, Axel (författare)
University of Malta,Nelson Mandela University
Hörnqvist Colliander, Magnus, 1979 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
Elsevier BV, 2020
2020
Engelska.
Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454. ; 183, s. 182-195
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Ni-base superalloys are critical materials for numerous demanding applications in the energy and aerospace sectors. Their complex chemistry and microstructure require detailed understanding of the operating deformation mechanisms and interaction between the matrix and the hardening phase during plastic deformation. Here we use in-situ neutron diffraction to show that the dependence of the deformation mechanisms and load redistribution on $\gamma^\prime$ particle size in a Ni-base superalloy with a $\gamma^\prime$ volume fraction of around $20 \%$ can exhibit distinct differences compared to their high volume fraction counterparts. In particular, the load redistribution in the coarse microstructure occurs immediately upon yielding in the present case, whereas high $\gamma^\prime$ volume fractions have been observed to initially lead to shear mediated co-deformation before work hardening allows looping to dominate and cause load partitioning at higher stresses. The fine microstructure, on the other hand, behaved similar to high volume fraction alloys, exhibiting co-deformation of the phases due to particle shearing. A recently developed elasto-plastic self-consistent (EPSC) crystal plasticity model, specifically developed for the case of coherent multi-phase materials, could reproduce experimental data with good accuracy. Furthermore, the finite strain formulation of the EPSC model allowed deformation induced texture predictions. The correct trends were predicted by the simulations, but the rate of lattice rotation was slower than experimentally observed. The insights point towards necessary model developments and improvements in order to accurately predict e.g. texture evolution during processing and effect of texture and microstructure on component properties.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Nyckelord

Nickel-base superalloy
Neutron diffraction
Elasto-plastic self-consistent (EPSC) model
Electron microscopy
Deformation mechanisms

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy