SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:b9dd0233-13ee-45e8-ae9a-0ff4f3405df5"
 

Sökning: id:"swepub:oai:research.chalmers.se:b9dd0233-13ee-45e8-ae9a-0ff4f3405df5" > Temperature dependa...

Temperature dependance of Intrinsic Spin Orbit Coupling Gap in Graphene probed by Terahertz photoconductivity

Maussang, K. (författare)
Dinar, K. (författare)
Laboratoire Charles Coulomb
Bray, C. (författare)
Laboratoire Charles Coulomb
visa fler...
Consejo, C. (författare)
Laboratoire Charles Coulomb
Delgado-Notario, J. A. (författare)
Polish Academy of Sciences,Universidad de Salamanca,University of Salamanca
Krishtopenko, S. (författare)
Laboratoire Charles Coulomb
Yahniuk, I. (författare)
Universität Regensburg,University of Regensburg,Polish Academy of Sciences
Gerbert, S. (författare)
Laboratoire Charles Coulomb
Ruffenach, S. (författare)
Laboratoire Charles Coulomb
Moench, E. (författare)
Universität Regensburg,University of Regensburg
Indykiewicz, Kornelia (författare)
Politechnika Wrocławska,Wrocław University of Science and Technology
Benhamoumbui, B. (författare)
Laboratoire Charles Coulomb
Jouault, B. (författare)
Laboratoire Charles Coulomb
Torres, J. (författare)
Meziani, Y. M. (författare)
Universidad de Salamanca,University of Salamanca
Knap, W. (författare)
Laboratoire Charles Coulomb
Yurgens, Avgust, 1959 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Ganichev, S.D. (författare)
Universität Regensburg,University of Regensburg,Polish Academy of Sciences
Teppe, F. (författare)
Laboratoire Charles Coulomb
visa färre...
 (creator_code:org_t)
2023
2023
Engelska.
Ingår i: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. - 2162-2027 .- 2162-2035.
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • Graphene is a quantum spin Hall insulator, with a nontrivial topological gap induced by the spin-orbit coupling. Such splitting is weak (∼ 45 μ eV) in the absence of external magnetic field. However, due to rather long spin-relaxation time, graphene is an attractive candidate for applications in quantum technologies. When it is encapsulated in hexagonal boron nitride, the coupling between graphene and the substrate compensates intrinsic spin-orbit coupling and decreases the nontrivial topological gap, which may lead to phase transition into a trivial band insulator state. In this work, we have measured experimentally the zero-field splittings in monolayer and bilayer graphene by the means of subterahertz photoconductivity-based electron spin resonance technique. The dependance in temperature of such splittings have been also studied in the 2-12K range. We observed a decrease of the spin splittings with increasing temperature. Such behavior might be understood from several physical mechanisms that could induce a temperature dependence of the spin-orbit coupling. These includes the difference in the expansion coefficients between the graphene and the boron nitride substrate or the metal contacts, the electronphonon interactions, and the presence of a magnetic order at low temperature.

Ämnesord

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Publikations- och innehållstyp

kon (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy