SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:c790b8e3-b7fa-4d4e-be74-ecf859cc14fc"
 

Sökning: id:"swepub:oai:research.chalmers.se:c790b8e3-b7fa-4d4e-be74-ecf859cc14fc" > Improving the Limit...

Improving the Limit of Detection of Nanoscale Sensors by Directed Binding to High-Sensitivity Areas

Feuz, Laurent, 1975 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Jönsson, Peter, 1981 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Jonsson, Magnus, 1981 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Höök, Fredrik, 1966 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
visa färre...
 (creator_code:org_t)
2010-04-08
2010
Engelska.
Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 4:4, s. 2167-2177
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The revelation of protein protein-interactions is one of the main preoccupations in the field of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we use short-range ordered holes with a diameter of similar to 150 nm and a depth of similar to 50 nm as a nanoplasmonic template. A similar to 40 nm high cylindrical region of Au is exposed on the walls of the holes only, while the rest of the surface consists of TiO2. Since the sensitivity is confined to the nanometric holes, the use of two different materials for the sensor substrate offers the opportunity to selectively bind proteins to the most sensitive Au regions on the sensor surface. This was realized by applying material-selective poly(ethylene glycol)-based surface chemistry, restricting NeutrAvidin binding to surface-immobilized biotin on the Au areas only. We show that under mass-transport limited conditions (low nM bulk concentrations), the initial time-resolved response of uptake could be increased by a factor of almost 20 compared with the case where proteins were allowed to bind on the entire sensor surface and stress the generic relevance of this concept for nanoscale sensors. In the scope of further optimizing the limit of detection (LOD) of the sensor structure, we present finite-element (FE) simulations to unravel spatially resolved binding rates. These revealed that the binding rates in the holes occur in a highly inhomogeneous manner with highest binding rates observed at the upper rim of the holes and the lowest rates observed at the bottom of the holes. By assuming a plasmonic field distribution with enhanced sensitivity at the Au-TiO(2)interface, the FE simulations reproduced the experimental findings qualitatively.

Ämnesord

NATURVETENSKAP  -- Biologi -- Biofysik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biophysics (hsv//eng)

Nyckelord

nanoholes
label-free
poly(ethylene
LIGAND-RECEPTOR INTERACTIONS
BIOSENSORS
selective surface chemistry
POLY(L-LYSINE)-G-POLY(ETHYLENE GLYCOL)
localized surface plasmon resonance (LSPR)
GOLD
glycol) (PEG)
OXIDE SURFACES
SELF-ASSEMBLED
RESISTANCE
nanoplasmonics
MONOLAYERS
SURFACE-PLASMON RESONANCE
PROTEIN ADSORPTION
POLY(ETHYLENE GLYCOL)
biosensor

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

  • ACS Nano (Sök värdpublikationen i LIBRIS)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy