SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub ;lar1:(hkr);pers:(Waldenström Jonas)"

Sökning: swepub > Högskolan Kristianstad > Waldenström Jonas

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Järhult, Josef D., et al. (författare)
  • Environmental levels of the antiviral oseltamivir induce development of resistance mutation H274Y in influenza A/H1N1 virus in mallards
  • 2011
  • Ingår i: PLOS ONE. - San Francisco, CA : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008-2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC₅₀ for OC was increased from 2-4 nM in wild-type viruses to 400-700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58-293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals.
  •  
3.
  • Jourdain, Elsa, et al. (författare)
  • Influenza Virus in a Natural Host, the Mallard : Experimental Infection Data
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild waterfowl, particularly dabbling ducks such as mallards (Anas platyrhynchos), are considered the main reservoir of low-pathogenic avian influenza viruses (LPAIVs). They carry viruses that may evolve and become highly pathogenic for poultry or zoonotic. Understanding the ecology of LPAIVs in these natural hosts is therefore essential. We assessed the clinical response, viral shedding and antibody production of juvenile mallards after intra-esophageal inoculation of two LPAIV subtypes previously isolated from wild congeners. Six ducks, equipped with data loggers that continually monitored body temperature, heart rate and activity, were successively inoculated with an H7N7 LPAI isolate (day 0), the same H7N7 isolate again (day 21) and an H5N2 LPAI isolate (day 35). After the first H7N7 inoculation, the ducks remained alert with no modification of heart rate or activity. However, body temperature transiently increased in four individuals, suggesting that LPAIV strains may have minor clinical effects on their natural hosts. The excretion patterns observed after both reinoculations differed strongly from those observed after the primary H7N7 inoculation, suggesting that not only homosubtypic but also heterosubtypic immunity exist. Our study suggests that LPAI infection has minor clinically measurable effects on mallards and that mallard ducks are able to mount immunological responses protective against heterologous infections. Because the transmission dynamics of LPAIVs in wild populations is greatly influenced by individual susceptibility and herd immunity, these findings are of high importance. Our study also shows the relevance of using telemetry to monitor disease in animals.
  •  
4.
  • Gillman, Anna, et al. (författare)
  • Oseltamivir-Resistant Influenza A (H1N1) Virus Strain with an H274Y Mutation in Neuraminidase Persists without Drug Pressure in Infected Mallards
  • 2015
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 81:7, s. 2378-2383
  • Tidskriftsartikel (refereegranskat)abstract
    • Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and emerging human IAVs often contain gene segments from avian viruses. The active drug metabolite of oseltamivir (oseltamivir carboxylate [OC]), stockpiled as Tamiflu for influenza pandemic preparedness, is not removed by conventional sewage treatment and has been detected in river water. There, it may exert evolutionary pressure on avian IAV in waterfowl, resulting in the development of resistant viral variants. A resistant avian IAV can circulate among wild birds only if resistance does not restrict viral fitness and if the resistant virus can persist without continuous drug pressure. In this in vivo mallard (Anas platyrhynchos) study, we tested whether an OC-resistant avian IAV (H1N1) strain with an H274Y mutation in the neuraminidase (NA-H274Y) could retain resistance while drug pressure was gradually removed. Successively infected mallards were exposed to decreasing levels of OC, and fecal samples were analyzed for the neuraminidase sequence and phenotypic resistance. No reversion to wild-type virus was observed during the experiment, which included 17 days of viral transmission among 10 ducks exposed to OC concentrations below resistance induction levels. We conclude that resistance in avian IAV that is induced by exposure of the natural host to OC can persist in the absence of the drug. Thus, there is a risk that human-pathogenic IAVs that evolve from IAVs circulating among wild birds may contain resistance mutations. An oseltamivir-resistant pandemic IAV would pose a substantial public health threat. Therefore, our observations underscore the need for prudent oseltamivir use, upgraded sewage treatment, and surveillance for resistant IAVs in wild birds.
  •  
5.
  • Gunnarsson, Gunnar, et al. (författare)
  • Zero Prevalence of Influenza A Virus in Two Raptor Species by Standard Screening
  • 2010
  • Ingår i: Vector-borne and zoonotic diseases. - : Mary Ann Liebert Inc. - 1530-3667 .- 1557-7759. ; 10:4, s. 387-390
  • Tidskriftsartikel (refereegranskat)abstract
    • Disease can have sever impact on animal populations, especially in rare species. Baseline data for atypical host species are missing for a range of infectious diseases, although such hosts are potentially more affected than the normal vectors and reservoir species. If highly pathogenic avian influenza strikes rare birds of prey, this may have crucial impact on the predator species itself, but also on the food web in which it interacts. Here we present the first large-scale screening of raptors that regularly consume birds belonging to the natural reservoir of influenza A viruses. Influenza A virus prevalence was studied in two rare raptors, the white-tailed sea eagle (Haliaetus albicilla) and the peregrine falcon (Falco peregrinus). Nestlings were screened for active (181 white-tailed sea eagles and 168 peregrine falcons) and past (123 white-tailed sea eagles and 6 peregrine falcons) infection in 2006-2007, and an additional 20 succumbed adult white-tailed sea eagles were sampled in 2003-2006. Neither high- nor low-pathogenic influnza infections were found in our sample, but this does not rule out that the former may have major impact on rare raptors and their food webs.
  •  
6.
  • Latorre-Margalef, Neus, et al. (författare)
  • Effects of influenza A virus infection on migrating mallard ducks
  • 2009
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 276:1659, s. 1029-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • The natural reservoir of influenza A virus is waterfowl, particularly dabbling ducks (genus Anas). Although it has long been assumed that waterfowl are asymptomatic carriers of the virus, a recent study found that low-pathogenic avian influenza (LPAI) infection in Bewick's swans (Cygnus columbianus bewickii) negatively affected stopover time, body mass and feeding behaviour. In the present study, we investigated whether LPAI infection incurred ecological or physiological costs to migratory mallards (Anas platyrhynchos) in terms of body mass loss and staging time, and whether such costs could influence the likelihood for long-distance dispersal of the avian influenza virus by individual ducks. During the autumn migrations of 2002-2007, we collected faecal samples (n = 10 918) and biometric data from mallards captured and banded at Ottenby, a major staging site in a flyway connecting breeding and wintering areas of European waterfowl. Body mass was significantly lower in infected ducks than in uninfected ducks (mean difference almost 20 g over all groups), and the amount of virus shed by infected juveniles was negatively correlated with body mass. There was no general effect of infection on staging time, except for juveniles in September, in which birds that shed fewer viruses stayed shorter than birds that shed more viruses. LPAI infection did not affect speed or distance of subsequent migration. The data from recaptured individuals showed that the maximum duration of infection was on average 8.3 days (s.e. 0.5), with a mean minimum duration of virus shedding of only 3.1 days (s.e. 0.1). Shedding time decreased during the season, suggesting that mallards acquire transient immunity for LPAI infection. In conclusion, deteriorated body mass following infection was detected, but it remains to be seen whether this has more long-term fitness effects. The short virus shedding time suggests that individual mallards are less likely to spread the virus at continental or intercontinental scales.
  •  
7.
  • Elmberg, Johan, et al. (författare)
  • Potential disease transmission from wild geese and swans to livestock, poultry and humans : a review of the scientific literature from a One Health perspective
  • 2017
  • Ingår i: Infection Ecology & Epidemiology. - : Taylor & Francis. - 2000-8686. ; 7:1, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • There are more herbivorous waterfowl (swans and geese) close to humans, livestock and poultry than ever before. This creates widespread conflict with agriculture and other human interests, but also debate about the role of swans and geese as potential vectors of disease of relevance for human and animal health. Using a One Health perspective, we provide the first comprehensive review of the scientific literature about the most relevant viral, bacterial, and unicellular pathogens occurring in wild geese and swans. Research thus far suggests that these birds may play a role in transmission of avian influenza virus, Salmonella, Campylobacter, and antibiotic resistance. On the other hand, at present there is no evidence that geese and swans play a role in transmission of Newcastle disease, duck plague, West Nile virus, Vibrio, Yersinia, Clostridium, Chlamydophila, and Borrelia. Finally, based on present knowledge it is not possible to say if geese and swans play a role in transmission of Escherichia coli, Pasteurella, Helicobacter, Brachyspira, Cryptosporidium, Giardia, and Microsporidia. This is largely due to changes in classification and taxonomy, rapid development of identification methods and lack of knowledge about host specificity. Previous research tends to overrate the role of geese and swans as disease vectors; we do not find any evidence that they are significant transmitters to humans or livestock of any of the pathogens considered in this review. Nevertheless, it is wise to keep poultry and livestock separated from small volume waters used by many wild waterfowl, but there is no need to discourage livestock grazing in nature reserves or pastures where geese and swans are present. Under some circumstances it is warranted to discourage swans and geese from using wastewater ponds, drinking water reservoirs, and public beaches. Intensified screening of swans and geese for AIV, West Nile virus and anatid herpesvirus is warranted.
  •  
8.
  •  
9.
  • Tolf, Conny, et al. (författare)
  • Individual variation in influenza a virus infection histories and long-term immune responses in mallards
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4, s. e61201-
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild dabbling ducks (genus Anas) are the main reservoir for influenza A virus (IAV) in the Northern Hemisphere. Current understanding of disease dynamics and epidemiology in this virus-host system has primarily been based on population-level surveillance studies and infection experiments conducted in laboratory settings. Using a combined experimental-natural approach with wild-strain captive mallards (Anas platyrhynchos), we monitored individual IAV infection histories and immunological responses of 10 birds over the course of 15 months. This is the first detailed study to track natural IAV infection histories over several seasons amongst the same individuals growing from juvenile to adults. The general trends in the infection histories of the monitored birds reflected seasonal variation in prevalence at the population level. However, within the study group there were significant differences between individuals in infection frequency as well as in short and long term anti-IAV antibody response. Further observations included individual variation in the number of infecting virus subtypes, and a strong tendency for long-lasting hemagglutinin-related homosubtypic immunity. Specifically, all infections in the second autumn, except one, were of different subtypes compared to the first autumn. The variation among birds concerning these epidemiologically important traits illustrates the necessity for IAV studies to move from the level of populations to examine individuals in order to further our understanding of IAV disease and epidemiology.
  •  
10.
  • Bengtsson, Daniel, et al. (författare)
  • Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?
  • 2016
  • Ingår i: The Royal Society. - : The Royal Society. - 2054-5703. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The last decade has seen a surge in research on avian influenza A viruses (IAVs), in part fuelled by the emergence, spread and potential zoonotic importance of highly pathogenic virus subtypes. The mallard (Anas platyrhynchos) is the most numerous and widespread dabbling duck in the world, and one of the most important natural hosts for studying IAV transmission dynamics. In order to predict the likelihood of IAV transmission between individual ducks and to other hosts, as well as between geographical regions, it is important to understand how IAV infection affects the host. In this study, we analysed the movements of 40 mallards equipped with GPS transmitters and three-dimensional accelerometers, of which 20 were naturally infected with low pathogenic avian influenza virus (LPAIV), at a major stopover site in the Northwest European flyway. Movements differed substantially between day and night, as well as between mallards returning to the capture site and those feeding in natural habitats. However, movement patterns did not differ between LPAIV infected and uninfected birds. Hence, LPAIV infection probably does not affect mallard movements during stopover, with high possibility of virus spread along the migration route as a consequence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (19)
konferensbidrag (11)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (12)
populärvet., debatt m.m. (2)
Författare/redaktör
Gunnarsson, Gunnar (29)
Olsen, Björn (21)
Elmberg, Johan (17)
Latorre-Margalef, Ne ... (15)
Waldenström, Jonas, ... (5)
visa fler...
Fransson, Thord (5)
Wallensten, Anders (5)
Fouchier, R. A. M. (5)
Lundkvist, Åke (4)
Bengtsson, Daniel (4)
Bröjer, Caroline (4)
Söderquist, Pär (4)
Tolf, Conny (4)
Svensson, Lovisa (3)
Djerf, Henric (3)
Brudin, Lars (2)
Lindberg, Peter (2)
Järhult, Josef D (2)
Söderström, Hanna (2)
Avril, Alexis (2)
Haemig, Paul D (2)
Muradrasoli, Shaman (2)
Safi, Kamran (2)
Fiedler, Wolfgang (2)
Wikelski, Martin (2)
Helander, Björn (2)
Blomqvist, Maria (2)
Christerson, Linus (2)
Hasselquist, Dennis (1)
Fick, Jerker (1)
Herrmann, Björn (1)
Grabic, Roman (1)
Berg, Lotta (1)
Lennerstrand, Johan (1)
Berg, Charlotte (1)
Brytting, M. (1)
Fransson, T (1)
Lerner, Henrik (1)
Lundkvist, Ake (1)
Stervander, Martin (1)
Munster, V. (1)
Pöysä, Hannu (1)
Grosbois, Vladimir (1)
Brudin, Lars, 1946- (1)
Norevik, Gabriel (1)
Herrman, Björn (1)
Helander, Björn, 194 ... (1)
Wille, Michelle (1)
Hobson, Keith A. (1)
visa färre...
Lärosäte
Linnéuniversitetet (15)
Uppsala universitet (11)
Lunds universitet (4)
Sveriges Lantbruksuniversitet (4)
Umeå universitet (3)
visa fler...
Karolinska Institutet (3)
Linköpings universitet (2)
Göteborgs universitet (1)
Naturhistoriska riksmuseet (1)
Marie Cederschiöld högskola (1)
visa färre...
Språk
Engelska (28)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Medicin och hälsovetenskap (7)
Lantbruksvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy