SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub ;lar1:(su);pers:(Ackermann M);lar1:(uu)"

Sökning: swepub > Stockholms universitet > Ackermann M > Uppsala universitet

  • Resultat 1-10 av 49
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbasi, R., et al. (författare)
  • FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22 STRING ICECUBE DETECTOR
  • 2009
  • Ingår i: Astrophysical Journal Letters. ; 701:1, s. L47-L51
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-2008 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of live time. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 sigma after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E-2 spectrum is E-2 Phi(v mu) < 1.4 x 10(-11) TeV cm(-2) s(-1), in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of 2.
  •  
2.
  • Abbasi, R., et al. (författare)
  • Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-String Detector
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007. ; 102:20, s. 201302
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250-5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.
  •  
3.
  • Abbasi, R., et al. (författare)
  • Solar energetic particle spectrum on 2006 December 13 determined by IceTop
  • 2008
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 689:1, s. L65-L68
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2006 December 13 the IceTop air shower array at the South Pole detected a major solar particle event. By numerically simulating the response of the IceTop tanks, which are thick Cerenkov detectors with multiple thresholds deployed at high altitude with no geomagnetic cutoff, we determined the particle energy spectrum in the energy range 0.6-7.6 GeV. This is the first such spectral measurement using a single instrument with a well-defined viewing direction. We compare the IceTop spectrum and its time evolution with previously published results and outline plans for improved resolution of future solar particle spectra.
  •  
4.
  • Achterberg et al., IceCube Collaboration: A, et al. (författare)
  • Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II
  • 2007
  • Ingår i: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998. ; 76:4, s. 042008
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent live time of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with nonthermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E-2 Phi(90%C.L.)< 7.4x10(-8) GeV cm(-2) s(-1) sr(-1) is placed on the diffuse flux of muon neutrinos with a Phi proportional to E-2 spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive Phi proportional to E-2 diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different from Phi proportional to E-2.
  •  
5.
  • Ackermann et al., AMANDA Collaboration: M, et al. (författare)
  • Limits to the Muon Flux from Neutralino Annihilations in the Sun with the AMANDA Detector
  • 2006
  • Ingår i: Astroparticle Physics. ; 24, s. 459-466
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100-5000 GeV. 
  •  
6.
  • Ackermann et al., AMANDA Collaboration: M, et al. (författare)
  • Optical Properties of Deep Glacial Ice at the South Pole
  • 2006
  • Ingår i: Journal of Geophysical Research. ; 111, s. D13203
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • We have remotely mapped optical scattering and absorption in glacial ice at the South Pole for wavelengths between 313 and 560 nm and depths between 1100 and 2350 m. We used pulsed and continuous light sources embedded with the AMANDA neutrino telescope, an array of more than six hundred photomultiplier tubes buried deep in the ice. At depths greater than 1300 m, both the scattering coefficient and absorptivity follow vertical variations in concentration of dust impurities, which are seen in ice cores from other Antarctic sites and which track climatological changes. The scattering coefficient varies by a factor of seven, and absorptivity (for wavelengths less than ∼450 nm) varies by a factor of three in the depth range between 1300 and 2300 m, where four dust peaks due to stadials in the late Pleistocene have been identified. In our absorption data, we also identify a broad peak due to the Last Glacial Maximum around 1300 m. In the scattering data, this peak is partially masked by scattering on residual air bubbles, whose contribution dominates the scattering coefficient in shallower ice but vanishes at ∼1350 m where all bubbles have converted to nonscattering air hydrates. The wavelength dependence of scattering by dust is described by a power law with exponent −0.90 ± 0.03, independent of depth. The wavelength dependence of absorptivity in the studied wavelength range is described by the sum of two components: a power law due to absorption by dust, with exponent −1.08 ± 0.01 and a normalization proportional to dust concentration that varies with depth; and a rising exponential due to intrinsic ice absorption which dominates at wavelengths greater than ∼500 nm.
  •  
7.
  • Ackermann, M., et al. (författare)
  • Search for ultra-high-energy neutrinos with amanda-II
  • 2008
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 675:2, s. 1014-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for diffuse neutrinos with energies in excess of 10(5) GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10(7) GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector ( roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E-2 Phi(90%CL) < 2.7x10(-7) GeV cm(-2) s(-1) sr(-1) valid over the energy range of 2x10(5) to 10(9) GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.
  •  
8.
  • AMANDA Collaboration, et al. (författare)
  • The IceCube Prototype String in AMANDA
  • 2006
  • Ingår i: Nuclear Instruments and Methods. ; A566, s. 169-181
  • Tidskriftsartikel (refereegranskat)abstract
    • The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope. It is a lattice of optical modules (OM) installed in the clear ice below the South Pole Station. Each OM contains a photomultiplier tube (PMT) that detects photons of Cherenkov light generated in the ice by muons and electrons. ICECUBE is a cubic-kilometer-sized expansion of AMANDA currently being built at the South Pole. In ICECUBE the PMT signals are digitized already in the optical modules and transmitted to the surface. A prototype string of 41 OMs equipped with this new all-digital technology was deployed in the AMANDA array in the year 2000. In this paper we describe the technology and demonstrate that this string serves as a proof of concept for the ICECUBE array. Our investigations show that the OM timing accuracy is 5 ns. Atmospheric muons are detected in excellent agreement with expectations with respect to both angular distribution and absolute rate. 
  •  
9.
  • Bohm, Christian, et al. (författare)
  • Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II
  • 2009
  • Ingår i: Physical Review D. - 1550-7998. ; 79:10, s. 102005
  • Tidskriftsartikel (refereegranskat)abstract
    • The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.
  •  
10.
  • Bohm, Christian, et al. (författare)
  • Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy
  • 2010
  • Ingår i: Astroparticle physics. - 0927-6505. ; 33:5-6, s. 277-286
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at similar to 5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background. (C) 2010 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49
  • [1]2345Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy