SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub ;lar1:(umu);srt2:(2000-2004);pers:(Wiberg Mikael)"

Sökning: swepub > Umeå universitet > (2000-2004) > Wiberg Mikael

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Fällman, Daniel, et al. (författare)
  • ScrollPad : Tangible Scrolling with Mobile Devices
  • 2004
  • Ingår i: Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS'04). - 0769520561 ; , s. 6-
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we approach the problem of managing large visual sets of data on small mobile devices. While current approaches either focuses on 1) scrolling on the mobile device, or 2) reducing the content in various ways (e.g. zooming, automatic redesign depending on the screen size of a mobile device, etc) our approach is to scroll with the mobile device itself (i.e. object in the world scrolling) over a large virtual area. We present the background for this project and working prototype called Scrollpad developed to illustrate this concept. We then present an initial user study conducted and relate this project to similar efforts made before concluding the paper.
  •  
5.
  • Hart, Andrew McKay, et al. (författare)
  • Exogenous leukaemia inhibitory factor enhances nerve regeneration after late secondary repair using a bioartificial nerve conduit
  • 2003
  • Ingår i: British Journal of Plastic Surgery. - : Elsevier. - 0007-1226 .- 1465-3087. ; 56:5, s. 444-450
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical outcome of peripheral nerve injuries remains disappointing, even in the ideal situation of a primary repair performed with optimal microsurgical techniques. Primary repair is appropriate for only about 85% of injuries, and outcome is worse following secondarynerverepair, partly owing to the reduced regenerative potential of chronically axotomised neurons. Leukaemiainhibitoryfactor (LIF) is a gp-130 neurocytokine that is thought to act as an ‘injury factor’, triggering the early-injury phenotype within neurons and potentially boosting their regenerative potential aftersecondarynerverepair. At 2–4 months after sciatic nerve axotomy in the rat, 1 cm gaps were repaired using either nerve isografts or poly-3-hydroxybutyrate conduits containing a calcium alginate and fibronectin hydrogel.Regeneration was determined by quantitative immunohistochemistry 6 weeks afterrepair, and the effect of incorporating recombinant LIF (100 ng/ml) into the conduits was assessed. LIF increased the regeneration distance in repairs performed after both 2 months (69%, P=0.019) and 4 months (123%, P=0.021), and was statistically comparable to nerve graft. The total area of axonal immunostaining increased by 21% (P>0.05) and 63% (P>0.05), respectively. Percentage immunostaining area was not increased in the 2 months group, but increased by 93% in the repairs performed 4 months after axotomy. Exogenous LIF, therefore, has a potential role in promoting peripheral nerveregenerationaftersecondaryrepair, and can be effectively delivered within poly-3-hydroxybutyrate bioartificialconduits used for nerverepair.
  •  
6.
  • Hart, Andrew McKay, et al. (författare)
  • Pharmacological enhancement of peripheral nerve regeneration in the rat by systemic acetyl-L-carnitine treatment
  • 2002
  • Ingår i: Neuroscience Letters. - : Elsevier. - 0304-3940 .- 1872-7972. ; 334:3, s. 181-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Peripheral nerve trauma remains a major cause of morbidity, largely due to the death of similar to40% of innervating sensory neurons, and to slow regeneration after repair. Acetyl-L-carnitine (ALCAR) is a physiological peptide that virtually eliminates sensory neuronal death, and may improve regeneration after primary nerve repair. This study determines the effect of ALCAR upon regeneration after secondary nerve repair, thereby isolating its effect upon neuronal regenerative capacity. Two months after unilateral sciatic nerve division 1 cm nerve graft repairs were performed (n = 5), and treatment with 50 mg/kg/day ALCAR was commenced for 6 weeks until harvest. Regeneration area and distance were determined by quantitative immunohistochemistry. ALCAR treatment significant increased immunostaining for both nerve fibres (total area 264% increase, P < 0.001; percentage area 229% increase, P < 0.001), and Schwann cells (total area 264% increase, P < 0.05; percentage area 86% increase, P < 0.05), when compared to no treatment. Regeneration into the distal stump was greatly enhanced (total area 2242% increase, P = 0.008; percentage area 3034% increase, P = 0.008). ALCAR significantly enhances the regenerative capacity of neurons that survive peripheral nerve trauma, in addition to its known neuroprotective effects.
  •  
7.
  • Hart, Andrew McKay, et al. (författare)
  • Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat : timecourse of cell death & elimination
  • 2002
  • Ingår i: Experimental Brain Research. - : Springer-Verlag New York. - 0014-4819 .- 1432-1106. ; 142:3, s. 308-318
  • Tidskriftsartikel (refereegranskat)abstract
    • The timecourse of cell death in adult dorsal root ganglia after peripheral axotomy has not been fully characterised. It is not clear whether neuronal death begins within I week of axotomy or continues beyond 2 months after axotomy. Similarly, neither the timecourse of satellite cell death in the adult, nor the effect of nerve repair has been described. L4 and L5 dorsal root ganglia were harvested at 1-14 days, 1-6 months after sciatic nerve division in the adult rat, in accordance with the Animals (Scientific Procedures) Act 1986. In separate groups the nerve was repaired either immediately or following a 1-week delay, and the ganglia were harvested 2 weeks after the initial transection. Microwave permeabilisation and triple staining enabled combined TUNEL staining, morphological examination and neuron counting by the stereological optical dissector technique. TUNEL-positive neurons, exhibiting a range of morphologies, were seen at all timepoints (peak 25 cells/group 2 weeks after axotomy) in axotomised ganglia only. TUNEL-positive satellite cell numbers peaked 2 months after axotomy and were more numerous in axotomised than control ganglia. L4 control ganglia contained 13,983 (SD 568) neurons and L5, 16,285 (SD 1,313). Neuron loss was greater in L5 than L4 axotomised ganglia, began at I week (15%, P=0.045) post-axotomy, reached 35% at 2 months (P<0.001) and was not significantly greater at 4 months or 6 months. Volume of axotomised ganglia fell to 19% of control by 6 months (P<0.001). In animals that underwent nerve repair, both the number of TUNEL-positive neurons and neuron loss were reduced. Immediate repair was more protective than repair after a 1-week delay. Thus TUNEL positivity precedes actual neuron loss, reflecting the time taken to complete cell death and elimination. Neuronal death begins within I day of peripheral axotomy, the majority occurs within the first 2 months, and limited death is still occurring at 6 months. Neuronal death is modulated by peripheral nerve repair and by its timing after axotomy. Secondary satellite cell death also occurs, peaking 2 months after axotomy. These results provide a logical framework for future research into neuronal and satellite cell death within the dorsal root ganglia and provide further insight into the process of axotomy induced neuronal death.
  •  
8.
  • Hart, Andrew McKay, et al. (författare)
  • Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury.
  • 2004
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 125:1, s. 91-101
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal death is a major factor in many neuropathologies, particularly traumatic, and yet no neuroprotective therapies are currently available clinically, although antioxidants and mitochondrial protection appear to be fruitful avenues of research. The simplest system involving neuronal death is that of the dorsal root ganglion after peripheral nerve trauma, where the loss of approximately 40% of primary sensory neurons is a major factor in the overwhelmingly poor clinical outcome of the several million nerve injuries that occur each year worldwide. N-acetyl-cysteine (NAC) is a glutathione substrate which is neuroprotective in a variety of in vitro models of neuronal death, and which may enhance mitochondrial protection. Using TdT uptake nick-end labelling (TUNEL), optical disection, and morphological studies, the effect of systemic NAC treatment upon L4 and 5 primary sensory neuronal death after sciatic nerve transection was investigated. NAC (150 mg/kg/day) almost totally eliminated the extensive neuronal loss found in controls both 2 weeks (no treatment 21% loss, NAC 3%, P=0.03) and 2 months after axotomy (no treatment 35% loss, NAC 3%, P=0.002). Glial cell death was reduced (mean number TUNEL positive cells 2 months after axotomy: no treatment 51/ganglion pair, NAC 16/ganglion pair), and mitochondrial architecture was preserved. The effects were less profound when a lower dose was examined (30 mg/kg/day), although significant neuroprotection still occurred. This provides evidence of the importance of mitochondrial dysregulation in axotomy-induced neuronal death in the peripheral nervous system, and suggests that NAC merits investigation in CNS trauma. NAC is already in widespread clinical use for applications outside the nervous system; it therefore has immediate clinical potential in the prevention of primary sensory neuronal death, and has therapeutic potential in other neuropathological systems.
  •  
9.
  • Hart, Andrew McKay, et al. (författare)
  • Systemic acetyl-L-carnitine eliminates sensory neuronal loss after peripheral axotomy : a new clinical approach in the management of peripheral nerve trauma
  • 2002
  • Ingår i: Experimental Brain Research. - : Springer-Verlag New York. - 0014-4819 .- 1432-1106. ; 145:2, s. 182-189
  • Tidskriftsartikel (refereegranskat)abstract
    • Several hundred thousand peripheral nerve injuries occur each year in Europe alone. Largely due to the death of around 40% of primary sensory neurons, sensory outcome remains disappointingly poor despite considerable advances in surgical technique; yet no clinical therapies currently exist to prevent this neuronal death. Acetyl-L-carnitine (ALCAR) is a physiological peptide with roles in mitochondrial bioenergetic function, which may also increase binding of nerve growth factor by sensory neurons. Following unilateral sciatic nerve transection, adult rats received either one of two doses of ALCAR or sham, or no treatment. Either 2 weeks or 2 months later, L4 and L5 dorsal root ganglia were harvested bilaterally, in accordance with the Animal (Scientific Procedures) Act 1986. Neuronal death was quantified with a combination of TUNEL [TdT (terminal deoxyribonucleotidyl transferase) uptake nick end labelling] and neuron counts obtained using the optical disector technique. Sham treatment had no effect upon neuronal death. ALCAR treatment caused a large reduction in the number of TUNEL-positive neurons 2 weeks after axotomy (sham treatment 33/group; low-dose ALCAR 6/group, P=0.132; high-dose ALCAR 3/group, P<0.05), and almost eliminated neuron loss (sham treatment 21%; low-dose ALCAR 0%, P=0.007; high-dose ALCAR 2%, P<0.013). Two months after axotomy the neuroprotective effect of high-dose ALCAR treatment was preserved for both TUNEL counts (no treatment five/group; high-dose ALCAR one/group) and neuron loss (no treatment 35%; high-dose ALCAR -4%, P<0.001). These results provide further evidence for the role of mitochondrial bioenergetic dysfunction in post-traumatic sensory neuronal death, and also suggest that acetyl-L-carnitine may be the first agent suitable for clinical use in the prevention of neuronal death after peripheral nerve trauma.
  •  
10.
  • Jegers, Kalle, et al. (författare)
  • User Behavior in Pervasive Gaming
  • 2004
  • Ingår i: IEEE Pervasive computing: Mobile and Ubiquitous Systems: work-in-progress paper. ; 3:1, s. 35-37
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy