SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub ;pers:(Rosengren Hjalmar 1972);lar1:(gu)"

Sökning: swepub > Rosengren Hjalmar 1972 > Göteborgs universitet

  • Resultat 1-10 av 29
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gahramanov, Ilmar, et al. (författare)
  • A new pentagon identity for the tetrahedron index
  • 2013
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :128
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently Kashaev, Luo and Vartanov, using the reduction from a four-dimensional superconformal index to a three-dimensional partition function, found a pentagon identity for a special combination of hyperbolic Gamma functions. Following their idea we have obtained a new pentagon identity for a certain combination of so-called tetrahedron indices arising from the equality of superconformal indices of dual three-dimensional N=2 supersymmetric theories and give a mathematical proof of it.
  •  
2.
  • Hormozi, Mahdi, 1980-, et al. (författare)
  • Inclusions of Waterman-Shiba spaces into generalized Wiener classes
  • 2014
  • Ingår i: Journal of Mathematical Analysis and Applications. - 0022-247X. ; 419:1, s. 428-432
  • Tidskriftsartikel (refereegranskat)abstract
    • The characterization of the inclusion of Waterman-Shiba spaces Lambda BV(p) into generalized Wiener classes of functions BV (q; delta) is given. It uses a new and shorter proof and extends an earlier result of U. Goginava.
  •  
3.
  • Ito, Tatsuro, et al. (författare)
  • Evaluation modules for the q-tetrahedron algebra
  • 2014
  • Ingår i: Linear Algebra and its Applications. - 0024-3795. ; 451, s. 107-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Let F denote an algebraically closed field, and fix a nonzero q∈F that is not a root of unity. We consider the q-tetrahedron algebra ⊠q over F. It is known that each finite-dimensional irreducible ⊠q-module of type 1 is a tensor product of evaluation modules. This paper contains a comprehensive description of the evaluation modules for ⊠q. This description includes the following topics. Given an evaluation module V for ⊠q, we display 24 bases for V that we find attractive. For each basis we give the matrices that represent the ⊠q-generators. We give the transition matrices between certain pairs of bases among the 24. It is known that the cyclic group $\Z_4$ acts on ⊠q as a group of automorphisms. We describe what happens when V is twisted via an element of $\Z_4$. We discuss how evaluation modules for ⊠q are related to Leonard pairs of q-Racah type.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Rosengren, Hjalmar, 1972- (författare)
  • An elliptic determinant transformation
  • 2005
  • Ingår i: M. Noumi and K. Takasaki (eds.), Elliptic Integrable Systems. ; s. 241-246
  • Konferensbidrag (övrigt vetenskapligt)
  •  
8.
  • Rosengren, Hjalmar, 1972- (författare)
  • An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices
  • 2009
  • Ingår i: Advances in Applied Mathematics. - 0196-8858. ; 43:2, s. 137-155
  • Tidskriftsartikel (refereegranskat)abstract
    • We obtain a new expression for the partition function of the 8VSOS model with domain wall boundary conditions, which we consider to be the natural extension of the Izergin-Korepin formula for the six-vertex model. As applications, we find dynamical (in the sense of the dynamical Yang-Baxter equation) generalizations of the enumeration and 2-enumeration of alternating sign matrices. The dynamical enumeration has a nice interpretation in terms of three-colourings of the square lattice.
  •  
9.
  • Rosengren, Hjalmar, 1972-, et al. (författare)
  • Continuous Hahn functions as Clebsch-Gordan coefficients
  • 2005
  • Ingår i: M. E. H. Ismail and E. Koelink (eds.), Theory and Applications of Special Functions - A Volume Dedicated to Mizan Rahman. ; s. 221-284
  • Konferensbidrag (refereegranskat)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
  • [1]23Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy