SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub srt2:(1960-1979);pers:(Lindgren Georg)"

Sökning: swepub > (1960-1979) > Lindgren Georg

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lindgren, Georg (författare)
  • A note on the asymptotic independence of high level crossings for dependent Gaussian processes
  • 1974
  • Ingår i: Annals of Probability. - : Institute of Mathematical Statistics. - 0091-1798. ; 2:3, s. 535-539
  • Tidskriftsartikel (refereegranskat)abstract
    • It is shown that the numbers of high level crossings by p dependent stationary Gaussian processes have asymptotically independent Poisson distributions if the observation interval and the height of the level increase in a coordinated way. The processes may be highly correlated, even linearly dependent.
  •  
3.
  • Lindgren, Georg (författare)
  • Discrete wave-analysis of continuous stochastic processes
  • 1973
  • Ingår i: Stochastic Processes and their Applications. - 1879-209X. ; 1:1, s. 83-105
  • Tidskriftsartikel (refereegranskat)abstract
    • he behaviour of a continuous-time stochastic process in the neighbourhood of zero-crossings and local maxima is compared with the behaviour of a discrete sampled version of the same process.For regular processes, with finite crossing-rate or finite rate of local extremes, the behaviour of the sampled version approaches that of the continuous one as the sampling interval tends to zero. Especially the zero-crossing distance and the wave-length (i.e., the time from a local maximum to the next minimum) have asymptotically the same distributions in the discrete and the continuous case. Three numerical illustrations show that there is a good agreement even for rather big sampling intervals.For non-regular processes, with infinite crossing-rate, the sampling procedure can yield useful results. An example is given in which a small irregular disturbance is superposed over a regular process. The structure of the regular process is easily observable with a moderate sampling interval, but is completely hidden with a small interval.
  •  
4.
  • Lindgren, Georg (författare)
  • Extreme values of stationary normal processes
  • 1971
  • Ingår i: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. - 0044-3719. ; 17:1, s. 39-47
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Lindgren, Georg (författare)
  • Functional limits of empirical distributions in crossing theory
  • 1977
  • Ingår i: Stochastic Processes and their Applications. - 1879-209X. ; 5:2, s. 143-149
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a functional limit theorem for the empirical level-crossing behaviour of a stationary Gaussian process. This leads to the well-known Slepian model process for a Gaussian process after an upcrossing of a prescribed level as a weak limit in C-space for an empirically defined finite set of functions.We also stress the importance of choosing a suitable topology by giving some natural examples of continuous and non-continuous functionals.
  •  
6.
  • Lindgren, Georg (författare)
  • Local maxima of Gaussian fields
  • 1972
  • Ingår i: Arkiv för Matematik. - 0004-2080. ; 10:1-2, s. 195-218
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of a stationary Gaussian process near a local maximum with a prescribed heightu has been explored in several papers by the present author, see [5]–[7], which include results for moderateu as well as foru→±∞. In this paper we generalize these results to a homogeneous Gaussian field {ξ(t) t ∈ R n}, with mean zero and the covariance functionr(t). The local structure of a Gaussian field near a high maximum has also been studied by Nosko, [8], [9], who obtains results of a slightly different type. In Section 1 it is shown that if ξ has a local maximum with heightu at0 then ξ(t) can be expressed as $$\xi _u (t) = uA(t) - \xi _u^\prime b(t) + \Delta (t),$$ WhereA(t) andb(t) are certain functions, θu is a random vector, and Δ(t) is a non-homogeneous Gaussian field. Actually ξu(t) is the old process ξ(t) conditioned in the horizontal window sense to have a local maximum with heightu fort=0; see [4] for terminology. In Section 2 we examine the process ξu(t) asu→−∞, and show that, after suitable normalizations, it tends to a fourth degree polynomial int 1…,t n with random coefficients. This result is quite analogous with the one-dimensional case. In Section 3 we study the locations of the local minima of ξu(t) asu → ∞. In the non-isotropic caser(t) may have a local minimum at some pointt 0. Then it is shown in 3.2 that ξu(t) will have a local minimum at some point τu neart 0, and that τu-t 0 after a normalization is asymptoticallyn-variate normal asu→∞. This is in accordance with the one-dimensional case.
  •  
7.
  •  
8.
  • Lindgren, Georg (författare)
  • Prediction from a random time point
  • 1975
  • Ingår i: Annals of Probability. - 0091-1798. ; 3:3, s. 412-423
  • Tidskriftsartikel (refereegranskat)abstract
    • In prediction (Wiener-, Kalman-) of a random normal process $\{X(t), t \in R\}$ it is normally required that the time $t_0$ from which prediction is made does not depend on the values of the process. If prediction is made only from time points at which the process takes a certain value $u,$ given a priori, ("prediction under panic"), the Wiener-prediction is not necessarily optimal; optimal should then mean best in the long run, for each single realization. The main theorem in this paper shows that when predicting only from upcrossing zeros $t_\nu$, the Wiener-prediction gives optimal prediction of $X(t_\nu + t)$ as $t_\nu$ runs through the set of zero upcrossings, if and only if the derivative $X'(t_\nu)$ at the crossing points is observed. The paper also gives the conditional distribution from which the optimal predictor can be computed.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy