SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub srt2:(2000-2011);pers:(Groop Leif);pers:(Kuusisto Johanna)"

Sökning: swepub > (2000-2011) > Groop Leif > Kuusisto Johanna

  • Resultat 1-10 av 18
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dupuis, Josée, et al. (författare)
  • New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036. ; 42:2, s. 105-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
  •  
2.
  • Heid, Iris M., et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.
  • 2010
  • Ingår i: Nature genetics. - 1546-1718. ; 42:11, s. 949
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 x 10(-9) to P = 1.8 x 10(-40)) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 x 10(-3) to P = 1.2 x 10(-13)). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
3.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - 1546-1718. ; 43:8, s. 753
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between similar to 2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 x 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 x 10(-11)) and one near SPRY2 (P = 3 x 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
4.
  • Newton-Cheh, Christopher, et al. (författare)
  • Genome-wide association study identifies eight loci associated with blood pressure
  • 2009
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036. ; 41:6, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N <= 71,225 European ancestry, N <= 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 x 10(-24)), CYP1A2 (P = 1 x 10(-23)), FGF5 (P = 1 x 10(-21)), SH2B3 (P = 3 x 10(-18)), MTHFR (P = 2 x 10(-13)), c10orf107 (P = 1 x 10(-9)), ZNF652 (P = 5 x 10(-9)) and PLCD3 (P = 1 x 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
  •  
5.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036. ; 42:2, s. 142-U75
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2- h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).
  •  
6.
  • Lindgren, Cecilia M, et al. (författare)
  • Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.
  • 2009
  • Ingår i: PLoS genetics. - 1553-7404. ; 5:6, s. e1000508
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
  •  
7.
  • Koeck, Thomas, et al. (författare)
  • A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes.
  • 2011
  • Ingår i: Cell metabolism. - 1932-7420. ; 13:1, s. 80-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) evolves when insulin secretion fails. Insulin release from the pancreatic β cell is controlled by mitochondrial metabolism, which translates fluctuations in blood glucose into metabolic coupling signals. We identified a common variant (rs950994) in the human transcription factor B1 mitochondrial (TFB1M) gene associated with reduced insulin secretion, elevated postprandial glucose levels, and future risk of T2D. Because islet TFB1M mRNA levels were lower in carriers of the risk allele and correlated with insulin secretion, we examined mice heterozygous for Tfb1m deficiency. These mice displayed lower expression of TFB1M in islets and impaired mitochondrial function and released less insulin in response to glucose in vivo and in vitro. Reducing TFB1M mRNA and protein in clonal β cells by RNA interference impaired complexes of the mitochondrial oxidative phosphorylation system. Consequently, nutrient-stimulated ATP generation was reduced, leading to perturbed insulin secretion. We conclude that a deficiency in TFB1M and impaired mitochondrial function contribute to the pathogenesis of T2D.
  •  
8.
  • Prokopenko, Inga, et al. (författare)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036. ; 41:1, s. 77-81
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
9.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036. ; 42:7, s. 579-U155
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
10.
  • Chen, Wei-Min, et al. (författare)
  • Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels.
  • 2008
  • Ingår i: The Journal of clinical investigation. - 0021-9738. ; Jun 2, s. 2620-2628
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from Finland and Sardinia. We found a significant association between the SNP rs563694 and fasting glucose concentrations (P = 3.5 x 10(-7)). This association was further investigated in an additional 18,436 nondiabetic individuals of mixed European descent from 7 different studies. The combined P value for association in these follow-up samples was 6.9 x 10(-26), and combining results from all studies resulted in an overall P value for association of 6.4 x 10(-33). Across these studies, fasting glucose concentrations increased 0.01-0.16 mM with each copy of the major allele, accounting for approximately 1% of the total variation in fasting glucose. The rs563694 SNP is located between the genes glucose-6-phosphatase catalytic subunit 2 (G6PC2) and ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11). Our results in combination with data reported in the literature suggest that G6PC2, a glucose-6-phosphatase almost exclusively expressed in pancreatic islet cells, may underlie variation in fasting glucose, though it is possible that ABCB11, which is expressed primarily in liver, may also contribute to such variation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
  • [1]2Nästa
Åtkomst
fritt online (1)
Typ av publikation
tidskriftsartikel (16)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Laakso, Markku (18)
Boehnke, Michael (15)
Jackson, Anne U. (14)
Scott, Laura J (14)
visa fler...
Wareham, Nicholas J (13)
Stringham, Heather M ... (13)
Tuomilehto, Jaakko (13)
Barroso, Ines (13)
Bonnycastle, Lori L. (13)
Lyssenko, Valeriya (12)
Isomaa, Bo (12)
McCarthy, Mark I (12)
Mohlke, Karen L (12)
Bergman, Richard N. (12)
Collins, Francis S. (12)
Tuomi, Tiinamaija (11)
Altshuler, David (11)
Erdos, Michael R (11)
Illig, Thomas (10)
Abecasis, Goncalo R. (10)
Watanabe, Richard M (10)
Morken, Mario A. (10)
Langenberg, Claudia (9)
Hattersley, Andrew T (9)
Thorleifsson, Gudmar (9)
Prokopenko, Inga (9)
Voight, Benjamin F. (9)
Thorsteinsdottir, Un ... (9)
Stefansson, Kari (9)
Frayling, Timothy M. (9)
Wichmann, H-Erich (9)
Narisu, Narisu (9)
Hansen, Torben (8)
Hu, Frank B (8)
Peltonen, Leena (8)
Weedon, Michael N. (8)
Willer, Cristen J. (8)
Steinthorsdottir, Va ... (8)
Zhao, Jing Hua (8)
Sanna, Serena (8)
Uda, Manuela (8)
Schlessinger, David (8)
Loos, Ruth J. F. (8)
Lindgren, Cecilia M. (8)
Saxena, Richa (8)
Morris, Andrew D (8)
Palmer, Colin N. A. (8)
Grallert, Harald (8)
visa färre...
Lärosäte
Lunds universitet (17)
Karolinska Institutet (7)
Göteborgs universitet (3)
Umeå universitet (2)
Språk
Engelska (18)
Ämne (HSV)
Medicin och hälsovetenskap (3)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy