SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub srt2:(2000-2011);pers:(Groop Leif);pers:(Ling Charlotte)"

Sökning: swepub > (2000-2011) > Groop Leif > Ling Charlotte

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ling, Charlotte, et al. (författare)
  • Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle
  • 2007
  • Ingår i: Journal of Clinical Investigation. - American Society for Clinical Investigation. - 0021-9738. ; 117:11, s. 3427-3435
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance and type 2 diabetes are associated with decreased expression of genes that regulate oxidative phosphorylation in skeletal muscle. To determine whether this defect might be inherited or acquired, we investigated the association of genetic, epigenetic, and nongenetic factors with expression of NDUFB6, a component of the respiratory chain that is decreased in muscle from diabetic patients. Expression of NDUFB6 was influenced by age, with lower gene expression in muscle of elderly subjects. Heritability of NDUFB6 expression in muscle was estimated to be approximately 60% in twins. A polymorphism in the NDUFB6 promoter region that creates a possible DNA methylation site (rs629566, A/G) was associated with a decline in muscle NDUFB6 expression with age. Although young subjects with the rs629566 G/G genotype exhibited higher muscle NDUFB6 expression, this genotype was associated with reduced expression in elderly subjects. This was subsequently explained by the finding of increased DNA methylation in the promoter of elderly, but not young, subjects carrying the rs629566 G/G genotype. Furthermore, the degree of DNA methylation correlated negatively with muscle NDUFB6 expression, which in turn was associated with insulin sensitivity. Our results demonstrate that genetic, epigenetic, and nongenetic factors associate with NDUFB6 expression in human muscle and suggest that genetic and epigenetic factors may interact to increase age-dependent susceptibility to insulin resistance.
  •  
2.
  • Nilsson, Louise, et al. (författare)
  • A common variant near the PRL gene is associated with increased adiposity in males
  • 2011
  • Ingår i: Molecular Genetics and Metabolism. - Elsevier. - 1096-7192. ; 102:1, s. 78-81
  • Tidskriftsartikel (refereegranskat)abstract
    • A common variant (rs4712652) adjacent to the prolactin gene was recently associated with obesity using a genome-wide association study. The aim of this study was to replicate the association between rs4712652 and obesity and further examine if rs4712652 is associated with fat percentage and adiponectin levels in a population based Scandinavian cohort. rs4712652 was genotyped in 4879 participants (mean BMI 26.5 +/- 4.5 kg/m(2)) from the population-based PPP-Botnia Study and related to BMI, fat percentage and adiponectin levels. We found that the risk A allele of rs4712652 is associated with increased BMI and fat percentage in males (P=0.0047 and P=0.025, respectively), but not in females (P = 0.98, P=0.45). Male A allele carriers have a higher risk of being overweight with an OR of 1.16 (P=0.025). While there was a significant negative correlation between adiponectin levels and fat percentage (r = -036; P=0.039) in male carriers of the protective GG genotype, this correlation was lost in male carriers of the risk rs4712652 A allele (P=0.33). Thus, the common SNP rs4712652 near the PRL gene seems to affect body fat and adiposity in a sex-specific fashion. It remains to be shown whether this is mediated by different prolactin concentrations or differences in tissue sensitivity to prolactin. (C) 2010 Elsevier Inc. All rights reserved.
  •  
3.
  • Brøns, Charlotte, et al. (författare)
  • Deoxyribonucleic Acid Methylation and Gene Expression of PPARGC1A in Human Muscle Is Influenced by High-Fat Overfeeding in a Birth-Weight-Dependent Manner.
  • 2010
  • Ingår i: The Journal of clinical endocrinology and metabolism. - The Endocrine Society. - 1945-7197. ; 95, s. 3048-3056
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Low birth weight (LBW) and unhealthy diets are risk factors of metabolic disease including type 2 diabetes (T2D). Genetic, nongenetic, and epigenetic data propose a role of the key metabolic regulator peroxisome proliferator-activated receptor gamma, coactivator 1alpha (PPARGC1A) in the development of T2D. Objective: Our objective was to investigate gene expression and DNA methylation of PPARGC1A and coregulated oxidative phosphorylation (OXPHOS) genes in LBW and normal birth weight (NBW) subjects during control and high-fat diets. Design, Subjects, and Main Outcome Measures: Twenty young healthy men with LBW and 26 matched NBW controls were studied after 5 d high-fat overfeeding (+50% calories) and after a control diet in a randomized manner. Hyperinsulinemic-euglycemic clamps were performed and skeletal muscle biopsies excised. DNA methylation and gene expression were measured using bisulfite sequencing and quantitative real-time PCR, respectively. Results: When challenged with high-fat overfeeding, LBW subjects developed peripheral insulin resistance and reduced PPARGC1A and OXPHOS (P < 0.05) gene expression. PPARGC1A methylation was significantly higher in LBW subjects (P = 0.0002) during the control diet. However, PPARGC1A methylation increased in only NBW subjects after overfeeding in a reversible manner. DNA methylation of PPARGC1A did not correlate with mRNA expression. Conclusions: LBW subjects developed peripheral insulin resistance and decreased gene expression of PPARGC1A and OXPHOS genes when challenged with fat overfeeding. The extent to which our finding of a constitutively increased DNA methylation in the PPARGC1A promoter in LBW subjects may contribute needs to be determined. We provide the first experimental support in humans that DNA methylation induced by overfeeding is reversible.
  •  
4.
  •  
5.
  • Grunnet, Louise G., et al. (författare)
  • Regulation and Function of FTO mRNA Expression in Human Skeletal Muscle and Subcutaneous Adipose Tissue
  • 2009
  • Ingår i: Diabetes. - American Diabetes Association. - 1939-327X. ; 58:10, s. 2402-2408
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Common variants in FTO (the fat mass- and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and nongenetic regulation of FTO mRNA in skeletal muscle and adipose tissue and their influence on in vivo glucose and fat metabolism. RESEARCH DESIGN AND METHODS-The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years) and elderly (58-66 years) nondiabetic twins examined by a hyperinsulinemic-euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n = 226) and skeletal muscle biopsies (n = 158). RESULTS-Heritability of FTO expression in both tissues was low, and FTO expression was not influenced by FTO rs9939609 genotype. FTO mRNA expression in skeletal muscle was regulated by age and sex, whereas age and BMI were predictors of adipose tissue FTO mRNA expression. FTO mRNA expression in adipose tissue was associated with an atherogenic lipid profile. In skeletal muscle, FTO mRNA expression was negatively associated to fat and positively to glucose oxidation rates as well as positively correlated with expression of genes involved in oxidative phosphorylation including PGC1 alpha. CONCLUSIONS-The heritability of FTO expression in adipose tissue and skeletal muscle is low and not influenced by obesity-associated FTO genotype. The age-dependent decline in FTO expression is associated with peripheral defects of glucose and fat metabolism. Diabetes 58:2402-2408, 2009
6.
  •  
7.
  • Kacerovsky-Bielesz, Gertrud, et al. (författare)
  • Short-Term Exercise Training Does Not Stimulate Skeletal Muscle ATP Synthesis in Relatives of Humans With Type 2 Diabetes
  • 2009
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 58:6, s. 1333-1341
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-We tested the hypothesis that short-term exercise training improves hereditary insulin resistance by stimulating ATP synthesis and investigated associations With gene polymorphisms. RESEARCH DESIGN AND METHODS-We studied 24 nono-bese first-degree relatives of type 2 diabetic patients and 12 control subjects at rest, and 48 h after three bouts of exercise. In addition to measurements of oxygen uptake and insulin sensitivity (oral glucose tolerance test), ectopic lipids and mitochondrial ATP synthesis were assessed using H-1 and P-31 magnetic resonance spectroscopy, respectively. They were genotyped for polymorphisms in genes regulating mitochondrial function, PPARGC1A (rs8192678) and NDUFB6 (rs540467). RESULTS-Relatives had slightly lower (P = 0.012) insulin sensitivity than control subjects. In control subjects, ATP synthase flux rose by 18% (P = 0.0001), being 23% higher (P = 0.002) than that in relatives after exercise training. Relatives responding to exercise training with increased ATP synthesis (+19%, P = 0.009) showed improved insulin sensitivity (P = 0.009) compared with those whose insulin sensitivity did not improve. A polymorphism in the NDUFB6 gene from respiratory chain complex I related to ATP synthesis (P = 0.02) and insulin Sensitivity response to exercise training (P = 0.05). ATP synthase flux correlated with O-2 uptake and insulin sensitivity. CONCLUSIONS-The ability of short-term exercise to stimulate ATP production distinguished individuals with improved insulin sensitivity from those whose insulin sensitivity did not improve. lit addition, the NDUFB6 gene polymorphism appeared to modulate this adaptation. This finding suggests that genes involved in mitochondrial function contribute to the response of ATP synthesis to exercise training. Diabetes 58:1333-1341, 2009
8.
  •  
9.
  • Ling, Charlotte, et al. (författare)
  • Calpain-10 expression is elevated in pancreatic islets from patients with type 2 diabetes.
  • 2009
  • Ingår i: PLoS ONE. - Public Library of Science. - 1932-6203. ; 4:8
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Calpain-10 was the first gene to be identified influencing the risk of type 2 diabetes (T2D) by positioning cloning. Studies in beta-cell lines and rodent islets suggest that calpain-10 may act as a regulator of insulin secretion. However, its role in human pancreatic islets remains unclear. The aim of this study was to examine if calpain-10 expression is altered in islets from patients with T2D and if the transcript level correlates with insulin release. We also tested if polymorphisms in the CAPN10 gene are associated with gene expression and insulin secretion in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Calpain-10 mRNA expression was analysed in human pancreatic islets from 34 non-diabetic and 10 T2D multi-organ donors. CAPN10 SNP-43 and SNP-44 were genotyped and related to gene expression and insulin release in response to glucose, arginine and glibenclamide. The mRNA level of calpain-10 was elevated by 64% in pancreatic islets from patients with T2D compared with non-diabetic donors (P = 0.01). Moreover, the calpain-10 expression correlated positively with arginine-stimulated insulin release in islets from non-diabetic donors (r = 0.45, P = 0.015). However, this correlation was lost in islets from patients with T2D (r = 0.09; P = 0.8). The G/G variant of SNP-43 was associated with reduced insulin release in response to glucose (P</=0.04) in non-diabetic donors. CONCLUSIONS: While calpain-10 expression correlates with insulin release in non-diabetic human islets, this correlation is lost in T2D suggesting that a stimulatory effect of calpain-10 could be lost in patients with T2D.
10.
  • Ling, Charlotte, et al. (författare)
  • Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion.
  • 2008
  • Ingår i: Diabetologia. - Springer Verlag. - 1432-0428. ; 51, s. 615-622
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Insulin secretion in pancreatic islets is dependent upon mitochondrial function and production of ATP. The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator-1 alpha (protein PGC-1alpha; gene PPARGC1A) is a master regulator of mitochondrial genes and its expression is decreased and related to impaired oxidative phosphorylation in muscle from patients with type 2 diabetes. Whether it plays a similar role in human pancreatic islets is not known. We therefore investigated if PPARGC1A expression is altered in islets from patients with type 2 diabetes and whether this expression is influenced by genetic (PPARGC1A Gly482Ser polymorphism) and epigenetic (DNA methylation) factors. We also tested if experimental downregulation of PPARGC1A expression in human islets influenced insulin secretion. METHODS: The PPARGC1A Gly482Ser polymorphism was genotyped in human pancreatic islets from 48 non-diabetic and 12 type 2 diabetic multi-organ donors and related to PPARGC1A mRNA expression. DNA methylation of the PPARGC1A promoter was analysed in pancreatic islets from ten type 2 diabetic and nine control donors. Isolated human islets were transfected with PPARGC1A silencing RNA (siRNA). RESULTS: PPARGC1A mRNA expression was reduced by 90% (p < 0.005) and correlated with the reduction in insulin secretion in islets from patients with type 2 diabetes. After downregulation of PPARGC1A expression in human islets by siRNA, insulin secretion was reduced by 41% (p </= 0. 01). We were able to ascribe reduced PPARGC1A expression in islets to both genetic and epigenetic factors, i.e. a common PPARGC1A Gly482Ser polymorphism was associated with reduced PPARGC1A mRNA expression (p < 0.00005) and reduced insulin secretion (p < 0.05). In support of an epigenetic influence, the PPARGC1A gene promoter showed a twofold increase in DNA methylation in diabetic islets compared with non-diabetic islets (p < 0.04). CONCLUSIONS/INTERPRETATION: We have shown for the first time that PPARGC1A might be important in human islet insulin secretion and that expression of PPARGC1A in human islets can be regulated by both genetic and epigenetic factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy