Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub srt2:(2000-2011);pers:(Groop Leif);pers:(Parikh Hemang)"

Sökning: swepub > (2000-2011) > Groop Leif > Parikh Hemang

  • Resultat 1-10 av 16
  • [1]2Nästa
Sortera/gruppera träfflistan
  • Bjornholm, Marie, et al. (författare)
  • TXNIP regulates peripheral glucose metabolism in humans
  • 2007
  • Ingår i: PLOS MEDICINE. - PUBLIC LIBRARY SCIENCE. - 1549-1277. ; 4:5, s. 868-879
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Type 2 diabetes mellitus ( T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. Methods and Findings We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein ( TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. Conclusions TXNIP regulates both insulin-dependent and insulin- independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM.
  • Koeck, Thomas, et al. (författare)
  • A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes.
  • 2011
  • Ingår i: Cell metabolism. - 1932-7420. ; 13:1, s. 80-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) evolves when insulin secretion fails. Insulin release from the pancreatic β cell is controlled by mitochondrial metabolism, which translates fluctuations in blood glucose into metabolic coupling signals. We identified a common variant (rs950994) in the human transcription factor B1 mitochondrial (TFB1M) gene associated with reduced insulin secretion, elevated postprandial glucose levels, and future risk of T2D. Because islet TFB1M mRNA levels were lower in carriers of the risk allele and correlated with insulin secretion, we examined mice heterozygous for Tfb1m deficiency. These mice displayed lower expression of TFB1M in islets and impaired mitochondrial function and released less insulin in response to glucose in vivo and in vitro. Reducing TFB1M mRNA and protein in clonal β cells by RNA interference impaired complexes of the mitochondrial oxidative phosphorylation system. Consequently, nutrient-stimulated ATP generation was reduced, leading to perturbed insulin secretion. We conclude that a deficiency in TFB1M and impaired mitochondrial function contribute to the pathogenesis of T2D.
  • Olsson, Anders H, et al. (författare)
  • Two common genetic variants near nuclear encoded OXPHOS genes are associated with insulin secretion in vivo.
  • 2011
  • Ingår i: European journal of endocrinology. - Bioscientifica Ltd. - 1479-683X. ; 164:5, s. 765-771
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Mitochondrial ATP production is important in the regulation of glucose-stimulated insulin secretion. Genetic factors may modulate the capacity of the β-cells to secrete insulin and thereby contribute to the risk of type 2 diabetes. OBJECTIVE: The aim of this study was to identify genetic loci in or adjacent to nuclear encoded genes of the oxidative phosphorylation (OXPHOS) pathway that are associated with insulin secretion in vivo. DESIGN AND METHODS: To find polymorphisms associated with glucose-stimulated insulin secretion, data from a genome-wide association study (GWAS) of 1467 non-diabetic individuals, the Diabetes Genetic Initiative (DGI), was examined. 413 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) ≥0.05 located in or adjacent to 76 OXPHOS genes were included in the DGI GWAS. A more extensive population based study of 4323 non-diabetics, the PPP-Botnia, was used as a replication cohort. Insulinogenic index during an oral glucose tolerance test (OGTT) was used as a surrogate marker of glucose-stimulated insulin secretion. Multivariate linear regression analyses were used to test genotype-phenotype associations. RESULTS: Two common variants were indentified in the DGI, where the major C-allele of rs606164, adjacent to NDUFC2 (NADH dehyrogenase (ubiqinone) 1 subunit C2), and the minor G-allele of rs1323070, adjacent to COX7A2 (cythochrome c oxidase subunit VIIa polypeptide 2), showed nominal associations with decreased glucose-stimulated insulin secretion (p=0.0009 respective p=0.003). These associations were replicated in PPP-Botnia (p=0.002 and p=0.05). CONCLUSION: Our study shows that genetic variation near genes involved in oxidative phosphorylation may influence glucose-stimulated insulin secretion in vivo.
  • Parikh, Hemang, et al. (författare)
  • Candidate genes for type 2 diabetes.
  • 2004
  • Ingår i: Rev Endocr Metab Disord. - Springer. - 1389-9155. ; 5:2, s. 151-176
  • Forskningsöversikt (refereegranskat)
  • Parikh, Hemang, et al. (författare)
  • Molecular correlates for maximal oxygen uptake (VO2max) and type 1 fibers.
  • 2008
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - 0193-1849. ; Apr 29, s. E1152-E1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Maximal oxygen uptake (VO2max) and the amount of type 1 fibers are interrelated but the underlying unifying molecular mechanisms are poorly understood. To explore these mechanisms we related gene expression profiles in skeletal muscle biopsies of 43 age-matched men from published datasets with VO2max and amount of type 1 fibers and replicated some of the findings in muscle biopsies from 154 young and elderly individuals using real-time PCR. We identified 66 probesets (genes or ESTs) positively and 83 probesets inversely correlated with VO2max and 171 probesets positively and 217 probesets inversely correlated with percentage of type 1 fibers in human skeletal muscle. Genes involved in oxidative phosphorylation (OXPHOS) showed high expression in individuals with high VO2max whereas the opposite was not the case in individuals with low VO2max. Instead, genes like AHNAK and BCL6 were associated with low VO2max. Also, expression of the OXPHOS genes NDUFB5 and ATP5C1 increased with exercise training and decreased with aging. In contrast, expression of AHNAK in skeletal muscle decreased with exercise training and increased with aging. Eleven genes (NDUFB4, COX5A, UQCRB, ATP5C1, ATP5G3, ETHE1, FABP3, ISCA1, MYST4, C9orf3 and PKIA) were positively correlated with both VO2max and percentage of type 1 fibers. VO2max closely reflects expression of OXPHOS genes, particularly of NDUFB5 and ATP5C1 in skeletal muscle suggesting good muscle fitness. In contrast, a high expression of AHNAK was associated with a low VO2max and poor muscle fitness. Key words: VO2max, Type 1 fibers, Aging.
  • Parikh, Hemang, et al. (författare)
  • Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus
  • 2009
  • Ingår i: BMC Medical Genomics. - Biomed Central Ltd. - 1755-8794. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) have emerged as a powerful approach for identifying susceptibility loci associated with polygenetic diseases such as type 2 diabetes mellitus (T2DM). However, it is still a daunting task to prioritize single nucleotide polymorphisms (SNPs) from GWAS for further replication in different population. Several recent studies have shown that genetic variation often affects gene-expression at proximal (cis) as well as distal (trans) genomic locations by different mechanisms such as altering rate of transcription or splicing or transcript stability. Methods: To prioritize SNPs from GWAS, we combined results from two GWAS related to T2DM, the Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium (WTCCC), with genome-wide expression data from pancreas, adipose tissue, liver and skeletal muscle of individuals with or without T2DM or animal models thereof to identify T2DM susceptibility loci. Results: We identified 1,170 SNPs associated with T2DM with P < 0.05 in both GWAS and 243 genes that were located in the vicinity of these SNPs. Out of these 243 genes, we identified 115 differentially expressed in publicly available gene expression profiling data. Notably five of them, IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and TSPAN8, have subsequently been shown to be associated with T2DM in different populations. To provide further validation of our approach, we reversed the approach and started with 26 known SNPs associated with T2DM and related traits. We could show that 12 (57%) (HHEX, HNF1B, IGF2BP2, IRS1, KCNJ11, KCNQ1, NOTCH2, PPARG, TCF7L2, THADA, TSPAN8 and WFS1) out of 21 genes located in vicinity of these SNPs were showing aberrant expression in T2DM from the gene expression profiling studies. Conclusions: Utilizing of gene expression profiling data from different tissues of individuals with or without T2DM or animal models thereof is a powerful tool for prioritizing SNPs from WGAS for further replication studies.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
  • [1]2Nästa
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy