SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:lu ;pers:(Samuelson Lars)"

Sökning: LAR1:lu > Samuelson Lars

  • Resultat 1-10 av 637
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aberg, I, et al. (författare)
  • Nanoscale tungsten aerosol particles embedded in GaAs
  • 2002
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 80:16, s. 2976-2978
  • Tidskriftsartikel (refereegranskat)abstract
    • GaAs containing buried nanoscale tungsten particles has been characterized electrically. The particles were produced using a special aerosol process and were embedded in GaAs by epitaxial overgrowth. Two different particle sizes were investigated separately. When the particle concentration was increased, a conductance drop of about 500 times was observed. A simulation model, based on a random distribution of the particles, was developed and used to support our findings. The major advantage of our method is the simplicity and low processing cost.
  •  
2.
  • Adolfsson, Karl, et al. (författare)
  • Fluorescent Nanowire Heterostructures as a Versatile Tool for Biology Applications
  • 2013
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 13:10, s. 4728-4732
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowires are increasingly used in biology, as sensors, as injection devices, and us model systems for toxicity studies. Currently, in situ visualization of nanowires in biological media is done using organic dyes, which a;:e prone to photobleaching, or using microscopy methods which either yield poor resolution or require a sophisticated setup. Here we show that inherently fluorescent nanowire axial heterostructnies c:an be used to localize and identify nanowires in cells and tissue; By synthesizing GaP GaInP nanowire heterostructures, with nonfluorescent GaP segments and fluorescent GaInP segments, we created a barcode labeling system enabling the distinction of the nanowire morphological and chemical properties using fluorescence microscopy. The GaInP photoluminescence stability, combined with the fact that the nanowires can be coated with different materials while retaining their fluorescence, make these nanowires promising tools for biological and nanotoxicological studies.
  •  
3.
  • Aghaeipour, Mahtab (författare)
  • Tailoring the Optical Response of III-V Nanowire Arrays
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Semiconductor nanowires show a great deal of promise for applications in a wide range of important fields, including photovoltaics, biomedicine, and information technology. Developing these exciting applications is strongly dependent on understanding the fundamental properties of nanowires, such as their optical resonances and absorption spectra. In this thesis we explore optical absorption spectra of arrays of vertical III-V nanowires with a special emphasis on structures optimized to enhance absorption in the solar spectrum. First, we analyze experimentally determined absorption spectra of both indium phosphide (InP) and gallium phosphide (GaP) nanowire arrays. The study provides an intuitive understanding of how the observed absorption resonances in the nanowires may be tuned as a function of their geometrical parameters and crystal structure. As a consequence, the spectral position of absorption resonances can be precisely controlled through the nanowire diameter. However, the results highlight how the blue-shift in the optical absorption resonances as the diameter of the nanowires decreases comes to a halt at low diameters. The stop point is related to the behavior of the refractive indices of the nanowires. The wavelength of the stop is different for nanowire polytypes of similar dimensions due to differences in their refractive indices. We then present a theoretical argument that it is important to consider symmetry properties when tailoring the optical modes excited in the nanowires for enhanced absorption. We show that absorption spectra may be enhanced compared to vertical nanowires at normal incidence by tilting the nanowires with normal incidence light, or by using off-normal incidence with vertical nanowires. This is because additional optical modes inside the nanowires are excited when the symmetry is broken. Looking forward to omnidirectional applications, we consider branched nanowires as a way to enhance the absorption spectra at normal incidence by taking advantage of simultaneous excitation of the spectrally different optical modes in the branches and the stems. Third, we describe in theoretical terms how integrating distributed Bragg reflectors (DBRs) with the nanowires can improve absorption spectra compared to conventional nanowires. DBRs provide a way to employ light trapping mechanisms which increases the optical path length of the excited modes and thereby improves the absorption of the excited modes. At normal incidence, DBR-nanowires improve the absorption efficiency to 78%, compared to 72% for conventional nanowires. We show that the efficiency is increased to 85% for an off-normal incident angle of 50˚. Overall, our results show that studies of optical resonances in nanowires that take the light-matter interaction into account provide opportunities to develop novel optical and optoelectronic functionalities in nanoscience and nanotechnology.
  •  
4.
  • Aghaeipour, Mahtab, et al. (författare)
  • Tunable absorption resonances in the ultraviolet for InP nanowire arrays
  • 2014
  • Ingår i: Optics Express. - 1094-4087. ; 22:23, s. 29204-29212
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < lambda < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors. (C) 2014 Optical Society of America
  •  
5.
  • Anttu, Nicklas, et al. (författare)
  • Absorption of light in InP nanowire arrays
  • 2014
  • Ingår i: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 7:6, s. 816-823
  • Tidskriftsartikel (refereegranskat)abstract
    • An understanding of the absorption of light is essential for efficient photovoltaic and photodetection applications with III-V nanowire arrays. Here, we correlate experiments with modeling and verify experimentally the predicted absorption of light in InP nanowire arrays for varying nanowire diameter and length. We find that 2,000 nm long nanowires in a pitch of 400 nm can absorb 94% of the incident light with energy above the band gap and, as a consequence, light which in a simple ray-optics description would be travelling between the nanowires can be efficiently absorbed by the nanowires. Our measurements demonstrate that the absorption for long nanowires is limited by insertion reflection losses when light is coupled from the air top-region into the array. These reflection losses can be reduced by introducing a smaller diameter to the nanowire-part closest to the air top-region. For nanowire arrays with such a nanowire morphology modulation, we find that the absorptance increases monotonously with increasing diameter of the rest of the nanowire.
  •  
6.
  • Anttu, Nicklas, et al. (författare)
  • Crystal Phase-Dependent Nanophotonic Resonances in InAs Nanowire Arrays
  • 2014
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 14:10, s. 5650-5655
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructures have many material, electronic, and optical properties that are not found in bulk systems and that are relevant for technological applications. For example, nanowires realized from III-V semiconductors can be grown into wurtzite crystal structure. This crystal structure does not naturally exist in bulk where these materials form the zinc-blende counterpart. Being able to concomitantly grow these nanowires in the zinc-blende and/or wurtzite crystal structure prlovides an important degree of control for the design and optimization of optoelectronic applications based on these semiconductor nanostructures. However, the refractive indices of this new crystallographic phase have so far not been elucidated. This shortcoming makes it impossible to predict and utilize he full potential of these new nanostructured materials for optoelectronics applications a careful design and optimization of optical resonances by tuning the nanostrucuted geometry is needed to achieve optimal performance. Here, we report and analyze striking differeences in the optical response of nanophotonic resonances in wurtzite and zinc-blend InAs nanowire arrays. Specifically, through reflectance measurements we find that the resonance can be tuned down to lambda approximate to 380 nm in wurtzite nanowires by decreasing the nanowire diameter. In stark contrast, a similar tuning to below approximate to 500 nm is not possible in the zinc-blende nanowires. Furthermore, we find that the wurtzite nanowires can absorb twice as strongly as the zinc-blende nanowires. We attribute these strikingly large differences in resonant behavior to large differences between the refractive indices of the two crystallographic phases realized in these nanostructures. We anticipate our finding to be relevant for other III-B materials as well as for all material systems that manifest polytypism. Taken together, our results demonstrate crystal phase engineering as a potentially new design dimension for optoelectronics applications.
  •  
7.
  • Anttu, Nicklas, et al. (författare)
  • Optical Far-Field Method with Subwavelength Accuracy for the Determination of Nanostructure Dimensions in Large-Area Samples.
  • 2013
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 13:6, s. 2662-2667
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical, chemical, and biological properties of nanostructures depend strongly on their geometrical dimensions. Here we present a fast, noninvasive, simple-to-perform, purely optical method that is capable of characterizing nanostructure dimensions over large areas with an accuracy comparable to that of scanning electron microscopy. This far-field method is based on the analysis of unique fingerprints in experimentally measured reflectance spectra using full three-dimensional optical modeling. We demonstrate the strength of our method on large-area (millimeter-sized) arrays of vertical InP nanowires, for which we simultaneously determine the diameter and length as well as cross-sample morphological variations thereof. Explicitly, the diameter is determined with an accuracy better than 10 nm and the length with an accuracy better than 30 nm. The method is versatile and robust, and we believe that it will provide a powerful and standardized measurement technique for large-area nanostructure arrays suitable for both research and industrial applications.
  •  
8.
  • Anttu, Nicklas, et al. (författare)
  • Reflection measurements to reveal the absorption in nanowire arrays
  • 2013
  • Ingår i: Optics Letters. - 0146-9592. ; 38:9, s. 1449-1451
  • Tidskriftsartikel (refereegranskat)abstract
    • The absorption of light is at the core of photovoltaic applications. For many nanostructure-based devices, an assessment of the absorption in the nanostructures is complicated by a thick, opaque substrate that prohibits transmission measurements. Here, we show how a single reflection measurement can be used for approximating the amount of light absorbed in vertical semiconductor nanowire arrays. (C) 2013 Optical Society of America
  •  
9.
  •  
10.
  • Balocco, C, et al. (författare)
  • Microwave detection at 110 GHz by nanowires with broken symmetry
  • 2005
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 5:7, s. 1423-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • By using arrays of nanowires with intentionally broken symmetry, we were able to detect microwaves up to 110 GHz at room temperature. This is, to the best of our knowledge, the highest speed that has been demonstrated in different types of novel electronic nanostructures to date. Our experiments showed a rather stable detection sensitivity over a broad frequency range from 100 MHz to 110 GHz. The novel working principle enabled the nanowires to detect microwaves efficiently without a dc bias. In principle, the need for only one high-resolution lithography step and the planar architecture allow an arbitrary number of nanowires to be made by folding a linear array as many times as required over a large area, for example, a whole wafer. Our experiment on 18 parallel nanowires showed a sensitivity of approximately 75 mV dc output/mW of nominal input power of the 110 GHz signal, even though only about 0.4% of the rf power was effectively applied to the structure because of an impedance mismatch. Because this array of nanowires operates simultaneously, low detection noise was achieved, allowing us to detect -25 dBm 110 GHz microwaves at zero bias with a standard setup.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 637
Typ av publikation
tidskriftsartikel (355)
konferensbidrag (268)
bokkapitel (9)
forskningsöversikt (3)
rapport (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (584)
övrigt vetenskapligt/konstnärligt (50)
populärvet., debatt m.m. (3)
Författare/redaktör
Deppert, Knut (124)
Seifert, Werner (111)
Borgström, Magnus (110)
Wallenberg, Reine (95)
Dick Thelander, Kimb ... (68)
visa fler...
Pistol, Mats Erik (61)
Thelander, Claes (61)
Gustafsson, Anders (53)
Mikkelsen, Anders (45)
Mårtensson, Thomas (43)
Heurlin, Magnus (40)
Wernersson, Lars-Eri ... (39)
Montelius, Lars (39)
Fröberg, Linus (39)
Björk, Mikael (39)
Wallentin, Jesper (37)
Storm, Kristian (36)
Persson, Ann (36)
Xu, Hongqi (35)
Ohlsson, Jonas (33)
Karlsson, Lisa (32)
Pettersson, Håkan (30)
Larsson, Magnus (30)
Johansson, Jonas (28)
Suyatin, Dmitry (28)
Prinz, Christelle (25)
Wagner, Jakob (25)
Lundgren, Edvin (23)
Maximov, Ivan (23)
Bi, Zhaoxia (23)
Magnusson, Martin (22)
Linke, Heiner (22)
Lindgren, David (21)
Ek, Martin (20)
Hessman, Dan (18)
Monemar, Bo (18)
Caroff, Philippe (18)
Magnusson, Martin H. (17)
Timm, Rainer (17)
Fuhrer, Andreas (17)
Nilsson, Henrik (16)
Trägårdh, Johanna (16)
Pettersson, Håkan, 1 ... (15)
Lehmann, Sebastian (15)
Malm, Jan-Olle (15)
Larsson, Marcus (15)
Håkanson, Ulf (15)
Mergenthaler, Kilian (15)
Sass, T (15)
visa färre...
Lärosäte
Lunds universitet (637)
Högskolan i Halmstad (45)
Linköpings universitet (10)
Linnéuniversitetet (7)
RISE (7)
Kungliga Tekniska Högskolan (6)
visa fler...
Chalmers tekniska högskola (6)
Göteborgs universitet (3)
visa färre...
Språk
Engelska (630)
Svenska (6)
Ryska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (535)
Teknik (225)
Medicin och hälsovetenskap (14)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy