SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:lu ;pers:(Gustafsson Mats);pers:(Blomqvist Göran);conttype:(refereed);mspu:(article);pers:(Ljungman Anders)"

Sökning: LAR1:lu > Gustafsson Mats > Blomqvist Göran > Refereegranskat > Tidskriftsartikel > Ljungman Anders

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl, Andreas, et al. (författare)
  • Traffic-generated emissions of ultrafine particles from pavement-tire interface
  • 2006
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 40:7, s. 1314-1323
  • Tidskriftsartikel (refereegranskat)abstract
    • In a road simulator study, a significant source of sub-micrometer fine particles produced by the road-tire interface was observed. Since the particle size distribution and source strength is dependent on the type of tire used, it is likely that these particles largely originate from the tires, and not the road pavement. The particles consisted most likely of mineral oils from the softening filler and fragments of the carbon-reinforcing filler material (soot agglomerates). This identification was based on transmission electron microscopy studies of collected ultrafine wear particles and on-line thermal treatment using a thermodesorber. The mean particle number diameters were between 15-50 nm, similar to those found in light duty vehicle (LDV) tail-pipe exhaust. A simple box model approach was used to estimate emission factors in the size interval 15-700 nm. The emission factors increased with increasing vehicle speed, and varied between 3.7 x 10(11) and 3.2 x 10(12) particles vehicle(-1) km(-1) at speeds of 50 and 70 km h(-1). This corresponds to between 0.1-1% of tail-pipe emissions in real-world emission studies at similar speeds from a fleet of LDV with 95% gasoline and 5% diesel-fueled cars. The emission factors for particles originating from the road-tire interface were, however, similar in magnitude to particle number emission factors from liquefied petroleum gas-powered vehicles derived in test bench studies in Australia 2005. Thus the road-tire interface may be a significant contributor to particle emissions from ultraclean vehicles. (c) 2005 Elsevier Ltd. All rights reserved.
  •  
2.
  • Gustafsson, Mats, et al. (författare)
  • Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material
  • 2008
  • Ingår i: Science of the Total Environment. - : Institutionen för klinisk och experimentell medicin. - 0048-9697 .- 1879-1026. ; 393:2-3, s. 226-240
  • Tidskriftsartikel (refereegranskat)abstract
    • In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic is the main reason for high particle concentrations in busy street- and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM10) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, PIXE and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM10, respectively. The results show that in the road simulator, where resuspension is minimised, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consists almost entirely of minerals from the pavement stone material, but also that S is enriched for the sub-micron particles and that Zn is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM10 emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results implies that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties.
  •  
3.
  • Lindbom, John, 1960-, et al. (författare)
  • Exposure to wear particles generated from studded tires and pavement induces inflammatory cytokine release from human macrophages
  • 2006
  • Ingår i: Chemical Research in Toxicology. - : American Chemical Society (ACS). - 0893-228X .- 1520-5010. ; 19:4, s. 521-530
  • Tidskriftsartikel (refereegranskat)abstract
    • Health risks associated with exposure to airborne paniculate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. Lately, wear particles generated from traffic have been recognized to be a major contributing source to the overall particle load, especially in the Nordic countries were studded tires are used. In this work, we investigated the inflammatory effect of PM10 generated from the wear of studded tires on two different types of pavement. As comparison, we also investigated PM10 from a traffic-intensive street, a subway station, and diesel exhaust particles (DEP). Human monocyte-derived macrophages, nasal epithelial cells (RPMI 2650), and bronchial epithelial cells (BEAS-2B) were exposed to the different types of particles, and the secretion of IL-6, IL-8, IL-10, and TNF-α into the culture medium was measured. The results show a significant release of cytokines from macrophages after exposure for all types of particles. When particles generated from asphalt/granite pavement were compared to asphalt/quartzite pavement, the granite pavement had a significantly higher capacity to induce the release of cytokines. The granite pavement particles induced cytokine release at the same magnitude as the street particles did, which was higher than what particles from both a subway station and DEP did. Exposure of epithelial cells to PM 10 resulted in a significant increase of TNF-α secreted from BEAS-2B cells for all types of particles used (DEP was not tested), and the highest levels were induced by subway particles. None of the particle types were able to evoke detectable cytokine release from RPMI 2650 cells. The results indicate that PM10 generated by the wear of studded tires on the street surface is a large contributor to the cytokine-releasing ability of particles in traffic-intensive areas and that the type of pavement used is important for the level of this contribution. Furthermore, the airway inflammatory potential of wear particles from tires and pavement might be of a greater magnitude than that of DEP.
  •  
4.
  • Lindbom, John, 1960-, et al. (författare)
  • Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells
  • 2007
  • Ingår i: Chemical Research in Toxicology. - : American Chemical Society (ACS). - 0893-228X .- 1520-5010. ; 20:6, s. 937-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-α, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-α, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, A A release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
Typ av innehåll
Författare/redaktör
Dahl, Andreas (4)
Gudmundsson, Anders (4)
Swietlicki, Erik (4)
Ljungman, Anders, 19 ... (3)
visa fler...
Bohgard, Mats (2)
Lindbom, John, 1960- (2)
Gharibi, Arash (1)
Lindbom, John (1)
visa färre...
Lärosäte
Lunds universitet (4)
Linköpings universitet (3)
VTI - Statens väg- och transportforskningsinstitut (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy