SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Morris Derek W.) ;pers:(McIntosh Andrew M.)"

Search: WFRF:(Morris Derek W.) > McIntosh Andrew M.

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
2.
  • Thompson, Paul M., et al. (author)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • In: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Journal article (peer-reviewed)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
3.
  • Palmer, Duncan S., et al. (author)
  • Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia
  • 2022
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 54:5, s. 541-547
  • Journal article (peer-reviewed)abstract
    • We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10−9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD’s polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3
Type of publication
journal article (3)
Type of content
peer-reviewed (3)
Author/Editor
Franke, Barbara (2)
Ching, Christopher R ... (2)
Agartz, Ingrid (2)
Brouwer, Rachel M (2)
Cannon, Dara M (2)
McDonald, Colm (2)
show more...
Melle, Ingrid (2)
Westlye, Lars T (2)
Thompson, Paul M (2)
Andreassen, Ole A (2)
Nyberg, Lars (2)
Weale, Michael E. (2)
de Geus, Eco J. C. (2)
Martin, Nicholas G. (2)
Boomsma, Dorret I. (2)
Hardy, John (2)
Djurovic, Srdjan (2)
Meyer-Lindenberg, An ... (2)
Ramasamy, Adaikalava ... (2)
Thalamuthu, Anbupala ... (2)
Cichon, Sven (2)
Rietschel, Marcella (2)
Schofield, Peter R (2)
McMahon, Francis J (2)
Deary, Ian J (2)
Mattheisen, Manuel (2)
Smith, Colin (2)
Fernández, Guillen (2)
Montgomery, Grant W. (2)
Heinz, Andreas (2)
Le Hellard, Stephani ... (2)
Lopez, Lorna M (2)
Homuth, Georg (2)
Francks, Clyde (2)
Hartman, Catharina A ... (2)
Freimer, Nelson B (2)
Hottenga, Jouke-Jan (2)
Wardlaw, Joanna M. (2)
Jahanshad, Neda (2)
Crespo-Facorro, Bene ... (2)
Kochunov, Peter (2)
Tordesillas-Gutierre ... (2)
Veltman, Dick J (2)
Winkler, Anderson M (2)
van Tol, Marie-José (2)
Sachdev, Perminder S ... (2)
Medland, Sarah E (2)
Mueller-Myhsok, Bert ... (2)
Grabe, Hans J. (2)
Saemann, Philipp G. (2)
show less...
University
Umeå University (3)
Karolinska Institutet (3)
University of Gothenburg (2)
Uppsala University (1)
Stockholm University (1)
Language
English (3)
Research subject (UKÄ/SCB)
Medical and Health Sciences (3)
Natural sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view