SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Miller Paul D.) "

Search: WFRF:(Miller Paul D.)

  • Result 51-60 of 200
Sort/group result
   
EnumerationReferenceCoverFind
51.
  • Abbasi, R., et al. (author)
  • IceCube sensitivity for low-energy neutrinos from nearby supernovae
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 535, s. A109-
  • Journal article (peer-reviewed)abstract
    • This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of similar to 1 km(3) in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of nu(e)'s released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.
  •  
52.
  • Abbasi, R., et al. (author)
  • Lateral distribution of muons in IceCube cosmic ray events
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:1, s. 012005-
  • Journal article (peer-reviewed)abstract
    • In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high p(T) (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard p(T) component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations. DOI: 10.1103/PhysRevD.87.012005
  •  
53.
  • Abbasi, R., et al. (author)
  • Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors
  • 2012
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 85, s. 042002-
  • Journal article (peer-reviewed)abstract
    • A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.
  •  
54.
  • Abbasi, R., et al. (author)
  • Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:1, s. 33-
  • Journal article (peer-reviewed)abstract
    • In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic-ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic-ray-induced muons recorded by the partially deployed IceCube observatory between 2009 May and 2010 May. The data include a total of 33 x 10(9) muon events with a median angular resolution of similar to 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic-ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high-energy sky map shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic-ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
  •  
55.
  • Abbasi, R., et al. (author)
  • Search for relativistic magnetic monopoles with IceCube
  • 2013
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 87:2, s. 022001-
  • Journal article (peer-reviewed)abstract
    • We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km(3). This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km(3) of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Phi(90%C.L.) similar to 3 x 10(-18) cm(-2) sr(-1) s(-1) for beta >= 0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost gamma below 10(7). This result is then interpreted for a wide range of mass and kinetic energy values.
  •  
56.
  • Abbasi, R., et al. (author)
  • Searches for high-energy neutrino emission in the galaxy with the combined icecube-amanda detector
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 763:1, s. 33-
  • Journal article (peer-reviewed)abstract
    • We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice. By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below ∼10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized for multiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E -2 and E -3 in order to cover the entire range of possible neutrino spectra. The steeply falling E -3 neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E 3 dN/dE ∼ 5.4-19.5 × 10-11 TeV2 cm-2 s-1 for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date.
  •  
57.
  • Abbasi, R., et al. (author)
  • Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 748:2, s. 118-
  • Journal article (peer-reviewed)abstract
    • In this paper, we present the results of searches for periodic neutrino emission from a catalog of binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. In the analysis, the period is fixed by these photon observations, while the phase and duration of the neutrino emission are treated as free parameters to be fit with the data. If the emission occurs during similar to 20% or less of the total period, this analysis achieves better sensitivity than a time-integrated analysis. We use the IceCube data taken from 2007 May 31 to 2008 April 5 with its 22 string configuration and from 2008 April 5 to 2009 May 20 with its 40 string configuration. No evidence for neutrino emission is found, with the strongest excess occurring for Cygnus X-3 at 2.1 sigma significance after accounting for trials. Neutrino flux upper limits for both periodic and time-integrated emission are provided.
  •  
58.
  • Abbasi, R., et al. (author)
  • Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A60-
  • Journal article (peer-reviewed)abstract
    • Context. Transient neutrino sources such as gamma-ray bursts (GRBs) and supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of less than or similar to 100 s. While GRB neutrinos would be produced in high relativistic jets, core-collapse SNe might host soft-relativistic jets, which become stalled in the outer layers of the progenitor star leading to an efficient production of high-energy neutrinos. Aims. To increase the sensitivity to these neutrinos and identify their sources, a low-threshold optical follow-up program for neutrino multiplets detected with the IceCube observatory has been implemented. Methods. If a neutrino multiplet, i.e. two or more neutrinos from the same direction within 100 s, is found by IceCube a trigger is sent to the Robotic Optical Transient Search Experiment, ROTSE. The 4 ROTSE telescopes immediately start an observation program of the corresponding region of the sky in order to detect an optical counterpart to the neutrino events. Results. No statistically significant excess in the rate of neutrino multiplets has been observed and furthermore no coincidence with an optical counterpart was found. Conclusions. The search allows, for the first time, to set stringent limits on current models predicting a high-energy neutrino flux from soft relativistic hadronic jets in core-collapse SNe. We conclude that a sub-population of SNe with typical Lorentz boost factor and jet energy of 10 and 3 x 1051 erg, respectively, does not exceed 4.2% at 90% confidence.
  •  
59.
  • Abbasi, R., et al. (author)
  • The design and performance of IceCube DeepCore
  • 2012
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 35:10, s. 615-624
  • Journal article (peer-reviewed)abstract
    • The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
  •  
60.
  • Scott, P., et al. (author)
  • Use of event-level neutrino telescope data in global fits for theories of new physics
  • 2012
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11, s. 057-
  • Journal article (peer-reviewed)abstract
    • We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector con figuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e. g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 51-60 of 200
Type of publication
journal article (186)
research review (5)
conference paper (3)
other publication (1)
book chapter (1)
patent (1)
show more...
show less...
Type of content
peer-reviewed (192)
other academic/artistic (5)
Author/Editor
Madsen, J. (70)
Sander, H. G. (69)
Barwick, S. W. (69)
Hultqvist, Klas (69)
Botner, Olga (69)
Gaisser, T. K. (69)
show more...
Hallgren, Allan (69)
Halzen, F. (69)
Hanson, K. (69)
Hultqvist, K. (69)
Karle, A. (69)
Bohm, Christian (68)
Kolanoski, H. (68)
Kowalski, M. (68)
Beatty, J. J. (68)
Berghaus, P. (68)
Berley, D. (68)
Bernardini, E. (68)
Bissok, M. (68)
Christy, B. (68)
Cowen, D. F. (68)
Davis, J. C. (68)
De Clercq, C. (68)
Desiati, P. (68)
Evenson, P. A. (68)
Fadiran, O. (68)
Fazely, A. R. (68)
Filimonov, K. (68)
Gallagher, J. (68)
Gladstone, L. (68)
Grant, D. (68)
Ha, C. (68)
Walck, Christian (68)
Helbing, K. (68)
Hickford, S. (68)
Hill, G. C. (68)
Hoffman, K. D. (68)
Homeier, A. (68)
Hoshina, K. (68)
Hulth, Per Olof (68)
Ishihara, A. (68)
Karg, T. (68)
Kiryluk, J. (68)
Kroll, G. (68)
Labare, M. (68)
Maruyama, R. (68)
Mase, K. (68)
Matis, H. S. (68)
Meagher, K. (68)
Meures, T. (68)
show less...
University
Uppsala University (119)
Stockholm University (85)
Karolinska Institutet (52)
Lund University (50)
University of Gothenburg (28)
Umeå University (27)
show more...
Högskolan Dalarna (16)
Chalmers University of Technology (10)
Royal Institute of Technology (9)
Linköping University (6)
Mid Sweden University (5)
Luleå University of Technology (4)
Swedish University of Agricultural Sciences (4)
Stockholm School of Economics (3)
Swedish Museum of Natural History (3)
Örebro University (2)
Södertörn University (2)
Linnaeus University (2)
Kristianstad University College (1)
Halmstad University (1)
Karlstad University (1)
show less...
Language
English (200)
Research subject (UKÄ/SCB)
Natural sciences (120)
Medical and Health Sciences (67)
Social Sciences (6)
Engineering and Technology (2)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view