SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0161 5505 OR L773:1535 5667 "

Search: L773:0161 5505 OR L773:1535 5667

  • Result 1-10 of 428
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wållberg, Helena, et al. (author)
  • HER2-Positive Tumors Imaged Within 1 Hour Using a Site-Specifically C-11-Labeled Sel-Tagged Affibody Molecule
  • 2012
  • In: Journal of Nuclear Medicine. - Stockholm : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 53:9, s. 1446-1453
  • Journal article (peer-reviewed)abstract
    • A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required. Methods: A HER2-binding Affibody molecule, Z(HER2:342), was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either C-11 or Ga-68, followed by biodistribution studies with small-animal PET. Dosimetry data for the 2 radiotracers were compared. Imaging of HER2-expressing human tumor xenografts was performed using the C-11-labeled Affibody molecule. Results: Both the C-11- and Ga-68-labeled tracers initially cleared rapidly from the blood, followed by a slower decrease to 4-5 percentage injected dose per gram of tissue at 1 h. Final retention in the kidneys was much lower (>5-fold) for the C-11-labeled protein, and its overall absorbed dose was considerably lower. C-11-Z(HER2:342) showed excellent tumor-targeting capability, with almost 10 percentage injected dose per gram of tissue in HER2-expressing tumors within 1 h. Specificity was demonstrated by preblocking binding sites with excess ligand, yielding significantly reduced radiotracer uptake (P = 0.002), comparable to uptake in tumors with low HER2 expression. Conclusion: To our knowledge, the Sel-tagging technique is the first that enables site-specific C-11-radiolabeling of proteins. Here we present the finding that, in a favorable combination between radionuclide half-life and in vivo pharmacokinetics of the Affibody molecules, C-11-labeled Set-tagged Z(HER2:342) can successfully be used for rapid and repeated PET studies of HER2 expression in tumors.
  •  
2.
  • Ahlgren, Sara, et al. (author)
  • Targeting of HER2-Expressing Tumors Using 111In-ABY-025, a Second-Generation Affibody Molecule with a Fundamentally Reengineered Scaffold
  • 2010
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 51:7, s. 1131-1138
  • Journal article (peer-reviewed)abstract
    • Overexpression of HER2 in breast carcinomas predicts response to trastuzumab therapy. Affibody molecules based on a non-immunoglobulin scaffold have demon-strated high potential for in vivo molecular imaging of HER2-expressing tumors. Re-engineering of the molecular scaffold has led to a second generation of optimized Affibody molecules, having a surface distinctly different from the parental protein domain from staphylococcal protein A. The new tracer showed further increased melting point, stability and overall hydrophilicity compared to the parental molecule, and was shown to be more amenable for chemical peptide synthesis. The goal of this study was to assess potential effects of this extensive re-engineering on HER2 targeting, using ABY-025, a DOTA conjugated variant of the novel tracer. Methods: 111In-ABY-025 was compared with previously evaluated parent HER2-binding Affibody tracers in vitro and in vivo. The in vivo behavior was further evaluated in mice bearing SKOV-3 xenografts, in rats and in cynomolgus macaques. Results: 111In-ABY-025 bound specifically to HER2 in vitro and in vivo. Direct comparison with the previous generation of HER2-binding tracers showed that ABY-025 retained excellent targeting properties. Rapid blood clearance was shown in mice, rats and macaques. A highly specific tumor uptake of 16.7 ± 2.5 %IA/g was seen at 4 h after injection. The tumor-to-blood ratio was 6.3 at 0.5 h, 88 at 4 h, and increased up to 3 days after injection. Gamma camera imaging of tumors was already possible 0.5 h after injection. Furthermore, repeated i.v. administration of ABY-025 did not induce antibody formation in rats. Conclusions: The biodistribution of 111In-ABY-025 was in remarkably good agreement with the parent tracers, despite profound re-engineering of the non-binding surface. The molecule displayed rapid blood clearance in all species investigated and excellent targeting capacity in tumor bearing mice, leading to high tumor-to-organ-ratios and high contrast imaging shortly after injection.
  •  
3.
  • Ahlgren, Sara, et al. (author)
  • Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine
  • 2009
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 50:5, s. 781-789
  • Journal article (peer-reviewed)abstract
    • The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced (99m)Tc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. METHODS: A C-terminal cysteine was introduced into the Affibody molecule Z(HER2:342) to enable site-specific labeling with (99m)Tc. Two recombinant variants, His(6)-Z(HER2:342)-Cys (dissociation constant [K(D)], 29 pM) and Z(HER2:2395)-Cys, lacking a His tag (K(D), 27 pM), were labeled with (99m)Tc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and gamma-camera imaging studies were performed in mice bearing HER2-expressing xenografts. RESULTS: (99m)Tc-His(6)-Z(HER2:342)-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. (99m)Tc-Z(HER2:2395)-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 +/- 2.5 (mean +/- SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 +/- 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 +/- 24 and 121 +/- 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical gamma-camera 1 h after injection of (99m)Tc-Z(HER2:2395)-Cys. CONCLUSION: The Affibody molecule (99m)Tc-Z(HER2:2395)-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.
  •  
4.
  • Aitken, Candice L., et al. (author)
  • Tumor localization and image registration of 18-FDG SPECT scans with CT scans
  • 1999
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 40:5, s. 290P-291P
  • Journal article (peer-reviewed)abstract
    • PURPOSE: The aim of this study was to determine the feasibility of registering routine clinical F-18 fluorodeoxyglucose (FDG) coincidence detection (CD) scans with computed tomographic (CT) scans for radiation treatment planning and case management. METHODS: F-18 FDG CD and chest CT scans, performed in 10 randomly selected patients with confirmed or possible adenocarcinoma of the lung, were evaluated. The quality of the matches was verified by comparisons of the center-to-center distance between a region of interest (ROI) manually drawn on the CT slice and warped onto the CD slice with an ROI drawn manually directly on the CD slice. In addition, the overlap between the two ROIs was calculated. RESULTS: All 10 F-18 FDG CD and CT scans were registered with good superimposition of soft tissue density on increased radionuclide activity. The center-to-center distance between the ROIs ranged from 0.29 mm to 8.08 mm, with an average center-to-center distance of 3.89 mm +/- 2.42 mm (0.69 pixels +/- 0.34 pixels). The ROI overlap ranged from 77% to 99%, with an average of 90% +/- 5.6%. CONCLUSIONS: Although the use of F-18 FDG CD shows great promise for the identification of tumors, it shares the same drawbacks as those associated with radiolabeled monoclonal antibody SPECT and ligand-based positron emission tomographic scans in that anatomic markers are limited. This study shows that image registration is feasible and may improve the clinical relevance of CD images.
  •  
5.
  • Alhuseinalkhudhur, Ali, et al. (author)
  • Human Epidermal Growth Factor Receptor 2-Targeting [68Ga]Ga-ABY-025 PET/CT Predicts Early Metabolic Response in Metastatic Breast Cancer.
  • 2023
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 64:9, s. 1364-1370
  • Journal article (peer-reviewed)abstract
    • Imaging using the human epidermal growth factor receptor 2 (HER2)-binding tracer 68Ga-labeled ZHER2:2891-Cys-MMA-DOTA ([68Ga]Ga-ABY-025) was shown to reflect HER2 status determined by immunohistochemistry and in situ hybridization in metastatic breast cancer (MBC). This single-center open-label phase II study investigated how [68Ga]Ga-ABY-025 uptake corresponds to biopsy results and early treatment response in both primary breast cancer (PBC) planned for neoadjuvant chemotherapy and MBC. Methods: Forty patients with known positive HER2 status were included: 19 with PBC and 21 with MBC (median, 3 previous treatments). [68Ga]Ga-ABY-025 PET/CT, [18F]F-FDG PET/CT, and core-needle biopsies from targeted lesions were performed at baseline. [18F]F-FDG PET/CT was repeated after 2 cycles of therapy to calculate the directional change in tumor lesion glycolysis (Δ-TLG). The largest lesions (up to 5) were evaluated in all 3 scans per patient. SUVs from [68Ga]Ga-ABY-025 PET/CT were compared with the biopsied HER2 status and Δ-TLG by receiver operating characteristic analyses. Results: Trial biopsies were HER2-positive in 31 patients, HER2-negative in 6 patients, and borderline HER2-positive in 3 patients. The [68Ga]Ga-ABY-025 PET/CT cutoff SUVmax of 6.0 predicted a Δ-TLG lower than -25% with 86% sensitivity and 67% specificity in soft-tissue lesions (area under the curve, 0.74 [95% CI, 0.67-0.82]; P = 0.01). Compared with the HER2 status, this cutoff resulted in clinically relevant discordant findings in 12 of 40 patients. Metabolic response (Δ-TLG) was more pronounced in PBC (-71% [95% CI, -58% to -83%]; P < 0.0001) than in MBC (-27% [95% CI, -16% to -38%]; P < 0.0001), but [68Ga]Ga-ABY-025 SUVmax was similar in both with a mean SUVmax of 9.8 (95% CI, 6.3-13.3) and 13.9 (95% CI, 10.5-17.2), respectively (P = 0.10). In multivariate analysis, global Δ-TLG was positively associated with the number of previous treatments (P = 0.0004) and negatively associated with [68Ga]Ga-ABY-025 PET/CT SUVmax (P = 0.018) but not with HER2 status (P = 0.09). Conclusion: [68Ga]Ga-ABY-025 PET/CT predicted early metabolic response to HER2-targeted therapy in HER2-positive breast cancer. Metabolic response was attenuated in recurrent disease. [68Ga]Ga-ABY-025 PET/CT appears to provide an estimate of the HER2 expression required to induce tumor metabolic remission by targeted therapies and might be useful as an adjunct diagnostic tool.
  •  
6.
  • Altai, Mohamed, et al. (author)
  • 188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors : preclinical assessment
  • 2014
  • In: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 55:11, s. 8-1842
  • Journal article (peer-reviewed)abstract
    • UNLABELLED: Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of (99m)Tc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide-based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate (188)Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)-expressing tumors.METHODS: ZHER2:V2 was labeled with (188)Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment.RESULTS: Binding of (188)Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that (188)Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible.CONCLUSION: (188)Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.
  •  
7.
  • Altai, Mohamed, et al. (author)
  • Feasibility of Affibody-Based Bioorthogonal Chemistry Mediated Radionuclide Pretargeting
  • 2016
  • In: Journal of Nuclear Medicine. - : SOC NUCLEAR MEDICINE. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:3, s. 431-436
  • Journal article (peer-reviewed)abstract
    • Affibody molecules constitute a new class of probes for radionuclide tumor targeting. The small size of Affibody molecules is favorable for rapid localization in tumors and clearance from circulation. However, high renal reabsorption of Affibody molecules prevents the use of residualizing radiometals, including several promising low-energy (beta- and alpha-emitters, for radionuclide therapy. We tested a hypothesis that Affibody-based pretargeting mediated by a bioorthogonal interaction between trans-cyclooctene (TCO) and tetrazine would provide higher accumulation of radiometals in tumor xenografts than in the kidneys. Methods: TCO was conjugated to the anti-human epidermal growth factor receptor 2 (HER2) Affibody molecule Z(2395). DOTA-tetrazine was labeled with In-111 and Lu-177. In vitro pretargeting was studied in HER2-expressing SKOV-3 and BT474 cell lines. In vivo studies were performed on BALB/C nu/nu mice bearing SKOV-3 xenografts. Results: I-125-Z(2395)-TCO bound specifically to HER2-expressing cells in vitro with an affinity of 45 +/- 16 pM. In-111-tetrazine bound specifically and selectively to Z(2325)-TCO pretreated cells. In vivo studies demonstrated HER2-specific I-125-Z(2395)-TCO accumulation in xenografts. TCO-mediated In-111-tetrazine localization was shown in tumors, when the radiolabeled tracer was injected 4 h after an injection of Z(2395)-TCO. At 1 h after injection, the tumor uptake of In-111-tetrazine and Lu-177-tetrazine was approximately 2-fold higher than the renal uptake. Pretargeting provided more than a 56-fold reduction of renal uptake of In-111 in comparison with direct targeting. Conclusion: The feasibility of Affibody-based bioorthogonal chemistry-mediated pretargeting was demonstrated. The use of pre-targeting provides a substantial reduction of radiometal accumulation in kidneys, creating preconditions for palliative radionuclide therapy.
  •  
8.
  • Altai, Mohamed, et al. (author)
  • Pretargeted Imaging and Therapy
  • 2017
  • In: Journal of Nuclear Medicine. - : SOC NUCLEAR MEDICINE INC. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 58:10, s. 1553-1559
  • Journal article (peer-reviewed)abstract
    • In vivo pretargeting stands as a promising approach to harnessing the exquisite tumor-targeting properties of antibodies for nuclear imaging and therapy while simultaneously skirting their pharmacokinetic limitations. The core premise of pretargeting lies in administering the targeting vector and radioisotope separately and having the 2 components combine within the body. In this manner, pretargeting strategies decrease the circulation time of the radioactivity, reduce the uptake of the radionuclide in healthy nontarget tissues, and facilitate the use of short-lived radionuclides that would otherwise be incompatible with antibody-based vectors. In this short review, we seek to provide a brief yet informative survey of the 4 preeminent mechanistic approaches to pretargeting, strategies predicated on streptavidin and biotin, bispecific antibodies, complementary oligonucleotides, and bioorthogonal click chemistry.
  •  
9.
  • Anand, Aseem, et al. (author)
  • Assessing Radiographic Response to 223Ra with an Automated Bone Scan Index in Metastatic Castration-Resistant Prostate Cancer Patients
  • 2020
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X .- 1535-5667. ; 61:5, s. 671-675
  • Journal article (peer-reviewed)abstract
    • For effective clinical management of patients being treated with 223Ra, there is a need for radiographic response biomarkers to minimize disease progression and to stratify patients for subsequent treatment options. The objective of this study was to evaluate an automated bone scan index (aBSI) as a quantitative assessment of bone scans for radiographic response in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: In a multicenter retrospective study, bone scans from patients with mCRPC treated with monthly injections of 223Ra were collected from 7 hospitals in Sweden. Patients with available bone scans before treatment with 223Ra and at treatment discontinuation were eligible for the study. The aBSI was generated at baseline and at treatment discontinuation. The Spearman rank correlation was used to correlate aBSI with the baseline covariates: alkaline phosphatase (ALP) and prostate-specific antigen (PSA). The Cox proportional-hazards model and Kaplan-Meier curve were used to evaluate the association of covariates at baseline and their change at treatment discontinuation with overall survival (OS). The concordance index (C-index) was used to evaluate the discriminating strength of covariates in predicting OS. Results: Bone scan images at baseline were available from 156 patients, and 67 patients had both a baseline and a treatment discontinuation bone scan (median, 5 doses; interquartile range, 3-6 doses). Baseline aBSI (median, 4.5; interquartile range, 2.4-6.5) was moderately correlated with ALP (r = 0.60, P < 0.0001) and with PSA (r = 0.38, P = 0.003). Among baseline covariates, aBSI (P = 0.01) and ALP (P = 0.001) were significantly associated with OS, whereas PSA values were not (P = 0.059). After treatment discontinuation, 36% (24/67), 80% (54/67), and 13% (9/67) of patients demonstrated a decline in aBSI, ALP, and PSA, respectively. As a continuous variable, the relative change in aBSI after treatment, compared with baseline, was significantly associated with OS (P < 0.0001), with a C-index of 0.67. Median OS in patients with both aBSI and ALP decline (median, 134 wk) was significantly longer than in patients with ALP decline only (median, 77 wk; P = 0.029). Conclusion: Both aBSI at baseline and its change at treatment discontinuation were significant parameters associated with OS. The study warrants prospective validation of aBSI as a quantitative imaging response biomarker to predict OS in patients with mCRPC treated with 223Ra.
  •  
10.
  • Andersson, Jesper L, et al. (author)
  • A method for coregistration of PET and MR brain images
  • 1995
  • In: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 36:7, s. 1307-1315
  • Journal article (peer-reviewed)abstract
    • Combining MRI morphological data with functional PET data offers significant advantages in research as well as in many clinical situations. Automatic methods are needed, however, to coregister the data from the two modalities.METHODS:Simulated PET images were created by simple and automatic segmentation of MR images followed by the assignment of different uptake values to various tissue types. The simulated PET images were registered to actual PET images using a pixel-by-pixel, PET-PET registration method. The transformation matrix was then applied to the MR images. The method was used to register MRI data to PET transmission scans and emission scans obtained with FDG, nomifensine and raclopride. Validation was performed by comparing the results to those obtained by matching internal points manually defined in both volumes.RESULTS:Emission and transmission PET images were successfully registered to MR data. Comparison to the manual method indicated a registration accuracy on the order of 1-2 mm in each direction. No difference in accuracy between the different tracers was found. The error sensitivity for the method's assumptions seemed to be sufficiently low to allow complete automation of the method.CONCLUSION:We present a rapid, robust and fully automated method to register PET and MR brain images with sufficient accuracy for most clinical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 428
Type of publication
journal article (304)
conference paper (122)
other publication (2)
Type of content
peer-reviewed (282)
other academic/artistic (146)
Author/Editor
Halldin, C (85)
Farde, L (57)
Varrone, A (49)
Lubberink, Mark (41)
Tolmachev, Vladimir (32)
Sörensen, Jens (30)
show more...
Strand, Sven-Erik (28)
Ljungberg, Michael (21)
Palm, Stig, 1964 (21)
Orlova, Anna (19)
Sandström, Mattias (19)
Bäck, Tom, 1964 (19)
Lindegren, Sture, 19 ... (17)
Bernhardt, Peter, 19 ... (16)
Antoni, Gunnar (15)
Gulyas, B (15)
SWAHN, CG (15)
Forssell-Aronsson, E ... (14)
Långström, Bengt (14)
Jacobsson, Lars, 194 ... (14)
Sundin, Anders (13)
Nakao, R (12)
Ito, H. (11)
Eriksson, Olof (11)
Nag, S (11)
Karlsson, P (11)
Enqvist, Olof, 1981 (11)
Edenbrandt, Lars (11)
Maguire Jr., Gerald ... (10)
Noz, Marilyn E. (10)
Arakawa, R (10)
Hultborn, Ragnar, 19 ... (9)
Salvatore, M (9)
Tran, T (9)
Kramer, Elissa L. (9)
Albertsson, Per, 196 ... (9)
Velikyan, Irina (9)
Pike, VW (9)
Sandell, J (9)
Suhara, T (9)
Strand, SE (9)
Lammertsma, Adriaan ... (9)
Sjögreen Gleisner, K ... (9)
Lundkvist, C (9)
Jacobsson, H (8)
Lundqvist, Hans (8)
Cuocolo, A (8)
Sundin, Anders, 1954 ... (8)
Toth, M (8)
Fujita, M (8)
show less...
University
Karolinska Institutet (178)
Uppsala University (118)
Lund University (74)
University of Gothenburg (59)
Royal Institute of Technology (27)
Chalmers University of Technology (14)
show more...
Umeå University (4)
Stockholm University (3)
Swedish University of Agricultural Sciences (2)
Linköping University (1)
show less...
Language
English (428)
Research subject (UKÄ/SCB)
Medical and Health Sciences (218)
Natural sciences (19)
Engineering and Technology (9)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view