SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "Lotta Agholme srt2:(2020)"

Sökning: Lotta Agholme > (2020)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bodda, C., et al. (författare)
  • HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection
  • 2020
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 217:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Herpes simplex virus (HSV) is the main cause of viral encephalitis in the Western world, and the type I interferon (IFN) system is important for antiviral control in the brain. Here, we have compared Ifnb induction in mixed murine brain cell cultures by a panel of HSV1 mutants, each devoid of one mechanism to counteract the IFN-stimulating cGAS-STING pathway. We found that a mutant lacking the deubiquitinase (DUB) activity of the VP1-2 protein induced particularly strong expression of Ifnb and IFN-stimulated genes. HSV1 ΔDUB also induced elevated IFN expression in murine and human microglia and exhibited reduced viral replication in the brain. This was associated with increased ubiquitination of STING and elevated phosphorylation of STING, TBK1, and IRF3. VP1-2 associated directly with STING, leading to its deubiquitination. Recruitment of VP1-2 to STING was dependent on K150 of STING, which was ubiquitinated by TRIM32. Thus, the DUB activity of HSV1 VP1-2 is a major viral immune-evasion mechanism in the brain. © 2020 Bodda et al.
  •  
2.
  • Cicognola, Claudia, et al. (författare)
  • Tauopathy-Associated Tau Fragment Ending at Amino Acid 224 Is Generated by Calpain-2 Cleavage.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 74:4, s. 1143-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau aggregation in neurons and glial cells characterizes tauopathies as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Tau proteolysis has been proposed as a trigger for tau aggregation and tau fragments have been observed in brain and cerebrospinal fluid (CSF). Our group identified a major tau cleavage at amino acid (aa) 224 in CSF; N-terminal tau fragments ending at aa 224 (N-224) were significantly increased in AD and lacked correlation to total tau (t-tau) and phosphorylated tau (p-tau) in PSP and CBD.Previous studies have shown cleavage from calpain proteases at sites adjacent to aa 224. Our aim was to investigate if calpain-1 or -2 could be responsible for cleavage at aa 224.Proteolytic activity of calpain-1, calpain-2, and brain protein extract was assessed on a custom tau peptide (aa 220-228), engineered with fluorescence resonance energy transfer (FRET) technology. Findings were confirmed with in-gel trypsination and mass spectrometry (MS) analysis of brain-derived bands with proteolytic activity on the FRET substrate. Finally, knock-down of the calpain-2 catalytic subunit gene (CAPN2) was performed in a neuroblastoma cell line (SH-SY5Y).Calpain-2 and brain protein extract, but not calpain-1, showed proteolytic activity on the FRET substrate. MS analysis of active gel bands revealed presence of calpain-2 subunits, but not calpain-1. Calpain-2 depletion and chemical inhibition suppressed proteolysis of the FRET substrate. CAPN2 knock-down caused a 76.4% reduction of N-224 tau in the cell-conditioned media.Further investigation of the calpain-2 pathway in the pathogenesis of tauopathies is encouraged.
  •  
3.
  • Mogren, Å, et al. (författare)
  • Orofacial function in children with Speech Sound Disorders (SSD) persisting after the age of six years
  • 2020
  • Ingår i: International Journal of Speech-Language Pathology. - : Informa UK Limited. - 1754-9515 .- 1754-9507. ; 22:5, s. 526-536
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The aim was to investigate, describe and analyse speech characteristics, intelligibility, orofacial function and co-existing neurodevelopmental symptoms in children with SSD of unknown origin, persisting after six years of age. Method: The study included 61 children with SSD (6–17 years) of unknown origin, referred for a speech and oral motor examination. The severity of SSD was estimated using Percentage Consonants Correct (PCC) and Percentage Vowels Correct (PVC) and assessments of resonance based on Swedish Articulation and Nasality Test (SVANTE). Orofacial function was screened using the Nordic Orofacial Test-Screening (NOT-S). Parents completed the Intelligibility in Context Scale (ICS) and a questionnaire including questions about heredity, medical and neurodevelopmental conditions, and speech development. Result: SSD varied according to PCC (8–95%) and PVC (55–100%) measurements. Percentages of co-occurring disorders included: 51% resonance deviations, 90% intelligibility issues, and 87% orofacial difficulties. The most affected orofacial domains were “Chewing and swallowing” (41%), “Masticatory muscles and jaw function” (38%) and “Sensory function” (38%). The majority (64%) had co-existing dysfunctions relating to general motor and neurodevelopmental disorders. Conclusion: Children with persistent SSD are at risk for orofacial dysfunction, general motor difficulties and other neurodevelopmental disorders and therefore should be screened for co-occurring disorders. © 2020, © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  •  
4.
  • Reinert, Line S, et al. (författare)
  • Brain immune cells undergo cGAS-STING-dependent apoptosis during herpes simplex virus type 1 infection.
  • 2020
  • Ingår i: The Journal of clinical investigation. - 1558-8238. ; 131:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Protection of the brain from viral infections involves the type I interferon (IFN-I) system, defects in which renders humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels leads to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we here show that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, while lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices, or mice treated with caspase inhibitor, exhibited lower viral load and improved outcome of infection. Collectively, we identify an activation-induced apoptosis program in brain immune cells which down-modulates local immune responses.
  •  
5.
  • Satir, Tugce Munise, et al. (författare)
  • Accelerated neuronal and synaptic maturation by BrainPhys medium increases Aβ secretion and alters Aβ peptide ratios from iPSC-derived cortical neurons.
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the neuropathological hallmarks of Alzheimer's disease (AD) is cerebral deposition of amyloid plaques composed of amyloid β (Aβ) peptides and the cerebrospinal fluid concentrations of those peptides are used as a biomarker for AD. Mature induced pluripotent stem cell (iPSC)-derived cortical neurons secrete Aβ peptides in ratios comparable to those secreted to cerebrospinal fluid in human, however the protocol to achieve mature neurons is time consuming. In this study, we investigated if differentiation of neuroprogenitor cells (NPCs) in BrainPhys medium, previously reported to enhance synaptic function of neurons in culture, would accelerate neuronal maturation and, thus increase Aβ secretion as compared to the conventional neural maintenance medium. We found that NPCs cultured in BrainPhys displayed increased expression of markers for cortical deep-layer neurons, increased synaptic maturation and number of astroglial cells. This accelerated neuronal maturation was accompanied by increased APP processing, resulting in increased secretion of Aβ peptides and an increased Aβ38 to Aβ40 and Aβ42 ratio. However, during long-term culturing in BrainPhys, non-neuronal cells appeared and eventually took over the cultures. Taken together, BrainPhys culturing accelerated neuronal maturation and increased Aβ secretion from iPSC-derived cortical neurons, but changed the cellular composition of the cultures.
  •  
6.
  •  
7.
  • Satir, Tugce Munise, et al. (författare)
  • Partial reduction of amyloid β production by β-secretase inhibitors does not decrease synaptic transmission
  • 2020
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease (AD) is the most common form of age-related neurodegenerative diseases. Cerebral deposition of Aβ peptides, especially Aβ42, is considered the major neuropathological hallmark of AD and the putative cause of AD-related neurotoxicity. Aβ peptides are produced by sequential proteolytic processing of APP, with β-secretase (BACE) being the initiating enzyme. Therefore, BACE has been considered an attractive therapeutic target in AD research and several BACE inhibitors have been tested in clinical trials, but so far, all have had negative outcomes or even led to worsening of cognitive function. AD can be triggered by Aβ years before the first symptoms appear and one reason for the failures could be that the clinical trials were initiated too late in the disease process. Another possible explanation could be that BACE inhibition alters physiological APP processing in a manner that impairs synaptic function, causing cognitive deterioration. Methods: The aim of this study was to investigate if partial BACE inhibition, mimicking the putative protective effect of the Icelandic mutation in the APP gene, could reduce Aβ generation without affecting synaptic transmission. To investigate this, we used an optical electrophysiology platform, in which effects of compounds on synaptic transmission in cultured neurons can be monitored. We employed this method on primary cortical rat neuronal cultures treated with three different BACE inhibitors (BACE inhibitor IV, LY2886721, and lanabecestat) and monitored Aβ secretion into the cell media. Results: We found that all three BACE inhibitors tested decreased synaptic transmission at concentrations leading to significantly reduced Aβ secretion. However, low-dose BACE inhibition, resulting in less than a 50% decrease in Aβ secretion, did not affect synaptic transmission for any of the inhibitors tested. Conclusion: Our results indicate that Aβ production can be reduced by up to 50%, a level of reduction of relevance to the protective effect of the Icelandic mutation, without causing synaptic dysfunction. We therefore suggest that future clinical trials aimed at prevention of Aβ build-up in the brain should aim for a moderate CNS exposure of BACE inhibitors to avoid side effects on synaptic function. © 2020 The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy