SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Akre K) "

Search: WFRF:(Akre K)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gaffney, K J, et al. (author)
  • Observation of structural anisotropy and the onset of liquidlike motion during the nonthermal melting of InSb
  • 2005
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 95:12
  • Journal article (peer-reviewed)abstract
    • The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements observe the delayed onset of diffusive atomic motion, signaling the appearance of liquidlike dynamics. They also demonstrate that the root-mean-squared displacement in the [111] direction increases faster than in the [110] direction after the first 500 fs. This structural anisotropy indicates that the initially generated fluid differs significantly from the equilibrium liquid.
  •  
2.
  • Cavalieri, A L, et al. (author)
  • Clocking femtosecond X rays.
  • 2005
  • In: Phys Rev Lett. - 0031-9007. ; 94:11
  • Journal article (peer-reviewed)abstract
    • Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.
  •  
3.
  • Fritz, D. M., et al. (author)
  • Ultrafast bond softening in bismuth : Mapping a solid's interatomic potential with X-rays
  • 2007
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 315:5812, s. 633-636
  • Journal article (peer-reviewed)abstract
    • Intense femtosecond laser excitation can produce transient states of matter that would otherwise be inaccessible to laboratory investigation. At high excitation densities, the interatomic forces that bind solids and determine many of their properties can be substantially altered. Here, we present the detailed mapping of the carrier density-dependent interatomic potential of bismuth approaching a solid-solid phase transition. Our experiments combine stroboscopic techniques that use a high-brightness linear electron accelerator-based x-ray source with pulse-by-pulse timing reconstruction for femtosecond resolution, allowing quantitative characterization of the interatomic potential energy surface of the highly excited solid.
  •  
4.
  • Hillyard, P. B., et al. (author)
  • Carrier-density-dependent lattice stability in InSb
  • 2007
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 98:12, s. 125501-
  • Journal article (peer-reviewed)abstract
    • The ultrafast decay of the x-ray diffraction intensity following laser excitation of an InSb crystal has been utilized to observe carrier dependent changes in the potential energy surface. For the first time, an abrupt carrier dependent onset for potential energy surface softening and the appearance of accelerated atomic disordering for a very high average carrier density have been observed. Inertial dynamics dominate the early stages of crystal disordering for a wide range of carrier densities between the onset of crystal softening and the appearance of accelerated atomic disordering.
  •  
5.
  • Lindenberg, AM, et al. (author)
  • Atomic-scale visualization of inertial dynamics
  • 2005
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 308:5720, s. 392-395
  • Journal article (peer-reviewed)abstract
    • The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.
  •  
6.
  • Lindenberg, A. M., et al. (author)
  • X-ray diffuse scattering measurements of nucleation dynamics at femtosecond resolution.
  • 2008
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 100:13, s. 135502-1-135502-5
  • Journal article (peer-reviewed)abstract
    • Femtosecond time-resolved small and wide angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the buildup of these fluctuations is measured in real time. Small-angle scattering measurements reveal snapshots of the spontaneous nucleation of nanoscale voids within a metastable liquid and support theoretical predictions of the ablation process.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Davies, Stuart J., et al. (author)
  • ForestGEO: Understanding forest diversity and dynamics through a global observatory network
  • 2021
  • In: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Journal article (peer-reviewed)abstract
    • ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view