SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hugelius Gustaf) "

Search: WFRF:(Hugelius Gustaf)

  • Result 1-10 of 135
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abbott, Benjamin W., et al. (author)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Journal article (peer-reviewed)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Abbott, Benjamin W., et al. (author)
  • We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems
  • 2022
  • In: Frontiers in Environmental Science. - : Frontiers Media SA. - 2296-665X. ; 10
  • Research review (peer-reviewed)abstract
    • Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO2, the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions.
  •  
3.
  • A'Campo, Willeke, et al. (author)
  • Arctic Tundra Land Cover Classification on the Beaufort Coast Using the Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery
  • 2021
  • In: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13:23
  • Journal article (peer-reviewed)abstract
    • Arctic tundra landscapes are highly complex and are rapidly changing due to the warming climate. Datasets that document the spatial and temporal variability of the landscape are needed to monitor the rapid changes. Synthetic Aperture Radar (SAR) imagery is specifically suitable for monitoring the Arctic, as SAR, unlike optical remote sensing, can provide time series regardless of weather and illumination conditions. This study examines the potential of seasonal backscatter mechanisms in Arctic tundra environments for improving land cover classification purposes by using a time series of HH/HV TerraSAR-X (TSX) imagery. A Random Forest (RF) classification was applied on multi-temporal Sigma Nought intensity and multi-temporal Kennaugh matrix element data. The backscatter analysis revealed clear differences in the polarimetric response of water, soil, and vegetation, while backscatter signal variations within different vegetation classes were more nuanced. The RF models showed that land cover classes could be distinguished with 92.4% accuracy for the Kennaugh element data, compared to 57.7% accuracy for the Sigma Nought intensity data. Texture predictors, while improving the classification accuracy on the one hand, degraded the spatial resolution of the land cover product. The Kennaugh elements derived from TSX winter acquisitions were most important for the RF model, followed by the Kennaugh elements derived from summer and autumn acquisitions. The results of this study demonstrate that multi-temporal Kennaugh elements derived from dual-polarized X-band imagery are a powerful tool for Arctic tundra land cover mapping.
  •  
4.
  • Alfredsson, Hanna, et al. (author)
  • Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change
  • 2015
  • In: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 124:1-3, s. 441-459
  • Journal article (peer-reviewed)abstract
    • We investigated the distribution, storage and landscape partitioning of soil amorphous silica (ASi) in a central Canadian region dominated by tundra and peatlands to provide a first estimate of the amount of ASi stored in Arctic permafrost ecosystems. We hypothesize that, similar to soil organic matter, Arctic soils store large amounts of ASi which may be affected by projected climate changes and associated changes in permafrost regimes. Average soil ASi storage (top 1 m) ranged between 9600 and 83,500 kg SiO2 ha(-1) among different land-cover types. Lichen tundra contained the lowest amounts of ASi while no significant differences were found in ASi storage among other land-cover types. Clear differences were observed between ASi storage allocated into the top organic versus the mineral horizon of soils. Bog peatlands, fen peatlands and wet shrub tundra stored between 7090 and 45,400 kg SiO2 ha(-1) in the top organic horizon, while the corresponding storage in lichen tundra, moist shrub- and dry shrub tundra only amounted to 1500-1760 kg SiO2 ha(-1). Diatoms and phytoliths are important components of ASi storage in the top organic horizon of peatlands and shrub tundra systems, while it appears to be a negligible component of ASi storage in the mineral horizon of shrub tundra classes. ASi concentrations decrease with depth in the soil profile for fen peatlands and all shrub tundra classes, suggesting recycling of ASi, whereas bog peatlands appeared to act as sinks retaining stored ASi on millennial time scales. Our results provide a conceptual framework to assess the potential effects of climate change impacts on terrestrial Si cycling in the Arctic. We believe that ASi stored in peatlands are particularly sensitive to climate change, because a larger fraction of the ASi pool is stored in perennially frozen ground compared to shrub tundra systems. A likely outcome of climate warming and permafrost thaw could be mobilization of previously frozen ASi, altered soil storage of biogenically derived ASi and an increased Si flux to the Arctic Ocean.
  •  
5.
  • Alfredsson, H., et al. (author)
  • Estimated storage of amorphous silica in soils of the circum-Arctic tundra region
  • 2016
  • In: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:3, s. 479-500
  • Journal article (peer-reviewed)abstract
    • We investigated the vertical distribution, storage, landscape partitioning, and spatial variability of soil amorphous silica (ASi) at four different sites underlain by continuous permafrost and representative of mountainous and lowland tundra, in the circum-Arctic region. Based on a larger set of data, we present the first estimate of the ASi soil reservoir (0-1 m depth) in circum-Arctic tundra terrain. At all sites, the vertical distribution of ASi concentrations followed the pattern of either (1) declining concentrations with depth (most common) or (2) increasing/maximum concentrations with depth. Our results suggest that a set of processes, including biological control, solifluction and other slope processes, cryoturbation, and formation of inorganic precipitates influence vertical distributions of ASi in permafrost terrain, with the capacity to retain stored ASi on millennial timescales. At the four study sites, areal ASi storage (0-1 m) is generally higher in graminoid tundra compared to wetlands. Our circum-Arctic upscaling estimates, based on both vegetation and soil classification separately, suggest a storage amounting to 219 ± 28 and 274 ± 33 Tmol Si, respectively, of which at least 30% is stored in permafrost. This estimate would account for about 3% of the global soil ASi storage while occupying an equal portion of the global land area. This result does not support the hypothesis that the circum-Arctic tundra soil ASi reservoir contains relatively higher amounts of ASi than other biomes globally as demonstrated for carbon. Nevertheless, climate warming has the potential to significantly alter ASi storage and terrestrial Si cycling in the Arctic.
  •  
6.
  • Bartsch, Annett, et al. (author)
  • Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra?
  • 2016
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:19, s. 5453-5470
  • Journal article (peer-reviewed)abstract
    • A new approach for the estimation of soil organic carbon (SOC) pools north of the tree line has been developed based on synthetic aperture radar (SAR; ENVISAT Advanced SAR Global Monitoring mode) data. SOC values are directly determined from backscatter values instead of upscaling using land cover or soil classes. The multi-mode capability of SAR allows application across scales. It can be shown that measurements in C band under frozen conditions represent vegetation and surface structure properties which relate to soil properties, specifically SOC. It is estimated that at least 29 Pg C is stored in the upper 30 cm of soils north of the tree line. This is approximately 25% less than stocks derived from the soil-map-based Northern Circumpolar Soil Carbon Database (NCSCD). The total stored carbon is underestimated since the established empirical relationship is not valid for peatlands or strongly cryoturbated soils. The approach does, however, provide the first spatially consistent account of soil organic carbon across the Arctic. Furthermore, it could be shown that values obtained from 1 km resolution SAR correspond to accounts based on a high spatial resolution (2 m) land cover map over a study area of about 7 x 7 km in NE Siberia. The approach can be also potentially transferred to medium-resolution C-band SAR data such as ENVISAT ASAR Wide Swath with similar to 120m resolution but it is in general limited to regions without woody vegetation. Global Monitoring-mode-derived SOC increases with unfrozen period length. This indicates the importance of this parameter for modelling of the spatial distribution of soil organic carbon storage.
  •  
7.
  • Beer, C., et al. (author)
  • Carbon dioxide release from retrogressive thaw slumps in Siberia
  • 2023
  • In: Environmental Research Letters. - 1748-9326. ; 18:10
  • Journal article (peer-reviewed)abstract
    • Thawing of ice-rich permafrost soils in sloped terrain can lead to activation of retrogressive thaw slumps (RTSs) which make organic matter available for decomposition that has been frozen for centuries to millennia. Recent studies show that the area affected by RTSs increased in the last two decades across the pan-Arctic. Combining a model of soil carbon dynamics with remotely sensed spatial details of thaw slump area and a soil carbon database, we show that RTSs in Siberia turned a previous quasi-neutral ecosystem into a strong source of carbon dioxide of 367 ± 213 gC m-1 a-1. On a global scale, recent CO2 emissions from Siberian thaw slumps of 0.42 ± 0.22 Tg carbon per year are negligible so far. However, depending on the future evolution of permafrost thaw and hence thaw slump-affected area, such hillslope processes can transition permafrost landscapes to become a major source of additional CO2 release into the atmosphere.
  •  
8.
  • Beer, Christian, et al. (author)
  • Vertical pattern of organic matter decomposability in cryoturbated permafrost-affected soils
  • 2022
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 17:10
  • Journal article (peer-reviewed)abstract
    • Permafrost thaw will release additional carbon dioxide into the atmosphere resulting in a positive feedback to climate change. However, the mineralization dynamics of organic matter (OM) stored in permafrost-affected soils remain unclear. We used physical soil fractionation, radiocarbon measurements, incubation experiments, and a dynamic decomposition model to identify distinct vertical pattern in OM decomposability. The observed differences reflect the type of OM input to the subsoil, either by cryoturbation or otherwise, e.g. by advective water-borne transport of dissolved OM. In non-cryoturbated subsoil horizons, most OM is stabilized at mineral surfaces or by occlusion in aggregates. In contrast, pockets of OM-rich cryoturbated soil contain sufficient free particulate OM for microbial decomposition. After thaw, OM turnover is as fast as in the upper active layer. Since cryoturbated soils store ca. 450 Pg carbon, identifying differences in decomposability according to such translocation processes has large implications for the future global carbon cycle and climate, and directs further process model development.
  •  
9.
  • Capek, P. T., et al. (author)
  • A plant-microbe interaction framework explaining nutrient effects on primary production
  • 2018
  • In: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:10, s. 1588-1596
  • Journal article (peer-reviewed)abstract
    • In most terrestrial ecosystems, plant growth is limited by nitrogen and phosphorus. Adding either nutrient to soil usually affects primary production, but their effects can be positive or negative. Here we provide a general stoichiometric framework for interpreting these contrasting effects. First, we identify nitrogen and phosphorus limitations on plants and soil microorganisms using their respective nitrogen to phosphorus critical ratios. Second, we use these ratios to show how soil microorganisms mediate the response of primary production to limiting and non-limiting nutrient addition along a wide gradient of soil nutrient availability. Using a meta-analysis of 51 factorial nitrogen-phosphorus fertilization experiments conducted across multiple ecosystems, we demonstrate that the response of primary production to nitrogen and phosphorus additions is accurately predicted by our stoichiometric framework. The only pattern that could not be predicted by our original framework suggests that nitrogen has not only a structural function in growing organisms, but also a key role in promoting plant and microbial nutrient acquisition. We conclude that this stoichiometric framework offers the most parsimonious way to interpret contrasting and, until now, unresolved responses of primary production to nutrient addition in terrestrial ecosystems.
  •  
10.
  • Capek, P., et al. (author)
  • The effect of warming on the vulnerability of subducted organic carbon in arctic soils
  • 2015
  • In: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 90, s. 19-29
  • Journal article (peer-reviewed)abstract
    • Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4-20 degrees C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (C-LOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, C-LOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a "negative priming effect", which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 135
Type of publication
journal article (104)
other publication (9)
conference paper (8)
doctoral thesis (5)
research review (5)
book chapter (2)
show more...
licentiate thesis (2)
show less...
Type of content
peer-reviewed (109)
other academic/artistic (26)
Author/Editor
Hugelius, Gustaf (94)
Kuhry, Peter (53)
Hugelius, Gustaf, 19 ... (36)
Palmtag, Juri (13)
Schuur, Edward A. G. (10)
Jackson, Robert B. (9)
show more...
Elberling, Bo (9)
Virtanen, Tarmo (8)
Wild, Birgit (8)
Richter, Andreas (8)
Olefeldt, David (7)
Strauss, Jens (7)
Grosse, G. (7)
Grosse, Guido (7)
Vonk, Jorien E. (6)
Manzoni, Stefano, 19 ... (6)
Bartsch, Annett (6)
Richter, A. (6)
Sannel, A. Britta K. (6)
Abbott, Benjamin W. (5)
McGuire, A. David (5)
Natali, Susan M. (5)
Ciais, Philippe (5)
Poulter, Benjamin (5)
Crill, Patrick (5)
Siewert, Matthias Be ... (5)
Palmtag, Juri, 1980- (5)
Lantuit, Hugues (5)
Guggenberger, G. (5)
Gentsch, N. (5)
Schädel, Christina (4)
Voigt, Carolina (4)
Fuchs, Matthias (4)
Wagner, Julia (4)
Romanovsky, V. E. (4)
Ahlström, Anders (4)
Canadell, Josep G. (4)
Manzoni, Stefano (4)
Beer, Christian (4)
Shibistova, O. (4)
Zhang, Zhen (4)
Siewert, Matthias B. (4)
Knoblauch, Christian (4)
Saunois, Marielle (4)
Blok, Daan (4)
Faucherre, Samuel (4)
Parmentier, Frans-Ja ... (4)
Barta, J. (4)
Schnecker, J. (4)
Alves, R. J. E. (4)
show less...
University
Stockholm University (134)
Lund University (19)
Umeå University (8)
University of Gothenburg (6)
Linköping University (5)
Swedish University of Agricultural Sciences (5)
show more...
Uppsala University (4)
Royal Institute of Technology (1)
show less...
Language
English (135)
Research subject (UKÄ/SCB)
Natural sciences (126)
Agricultural Sciences (15)
Engineering and Technology (2)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view