SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kłoszewska Iwona) "

Sökning: WFRF:(Kłoszewska Iwona)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Daniel, et al. (författare)
  • The interactive effect of demographic and clinical factors on hippocampal volume : A multicohort study on 1958 cognitively normal individuals
  • 2017
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 27:6, s. 653-667
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is characterized by hippocampal atrophy. Other factors also influence the hippocampal volume, but their interactive effect has not been investigated before in cognitively healthy individuals. The aim of this study is to evaluate the interactive effect of key demographic and clinical factors on hippocampal volume, in contrast to previous studies frequently investigating these factors in a separate manner. Also, to investigate how comparable the control groups from ADNI, AIBL, and AddNeuroMed are with five population-based cohorts. In this study, 1958 participants were included (100 AddNeuroMed, 226 ADNI, 155 AIBL, 59 BRC, 295 GENIC, 279 BioFiNDER, 398 PIVUS, and 446 SNAC-K). ANOVA and random forest were used for testing between-cohort differences in demographic-clinical variables. Multiple regression was used to study the influence of demographic-clinical variables on hippocampal volume. ANCOVA was used to analyze whether between-cohort differences in demographic-clinical variables explained between-cohort differences in hippocampal volume. Age and global brain atrophy were the most important variables in explaining variability in hippocampal volume. These variables were not only important themselves but also in interaction with gender, education, MMSE, and total intracranial volume. AddNeuroMed, ADNI, and AIBL differed from the population-based cohorts in several demographic-clinical variables that had a significant effect on hippocampal volume. Variability in hippocampal volume in individuals with normal cognition is high. Differences that previously tended to be related to disease mechanisms could also be partly explained by demographic and clinical factors independent from the disease. Furthermore, cognitively normal individuals especially from ADNI and AIBL are not representative of the general population. These findings may have important implications for future research and clinical trials, translating imaging biomarkers to the general population, and validating current diagnostic criteria for Alzheimer's disease and predementia stages.
  •  
2.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
3.
  • Khan, Wasim, et al. (författare)
  • A Multi-Cohort Study of ApoE epsilon 4 and Amyloid-beta Effects on the Hippocampus in Alzheimer's Disease
  • 2017
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 56:3, s. 1159-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer's disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-beta (A beta) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compare hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in epsilon 4 carriers with positron emission tomography (PET) A beta who were dichotomized (A beta+/A beta-) using previous cut-offs. We found a linear reduction in hippocampal volumes with epsilon 4 carriers possessing the smallest volumes, epsilon 3 carriers possessing intermediate volumes, and epsilon 2 carriers possessing the largest volumes. Moreover, AD and MCI epsilon 4 carriers possessed the smallest hippocampal volumes and control epsilon 2 carriers possessed the largest hippocampal volumes. Subjects with both APOE epsilon 4 and A beta positivity had the lowest hippocampal volumes when compared to A beta-epsilon 4 carriers, suggesting a synergistic relationship between APOE epsilon 4 and A beta. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE epsilon 4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.
  •  
4.
  • Mangialasche, Francesca, et al. (författare)
  • Tocopherols and tocotrienols plasma levels are associated with cognitive impairment
  • 2012
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 33:10, s. 2282-2290
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin E includes 8 natural compounds (4 tocopherols, 4 tocotrienols) with potential neuroprotective activity. alpha-Tocopherol has mainly been investigated in relation to cognitive impairment. We examined the relation of all plasma vitamin E forms and markers of vitamin E damage (alpha-tocopherylquinone, 5-nitro-gamma-tocopherol) to mild cognitive impairment (MCI) and Alzheimer's disease (AD). Within the AddNeuroMed-Project, plasma tocopherols, tocotrienols, alpha-tocopherylquinone, and 5-nitro-gamma-tocopherol were assessed in 168 AD cases, 166 MCI, and 187 cognitively normal (CN) people. Compared with cognitively normal subjects, AD and MCI had lower levels of total tocopherols, total tocotrienols, and total vitamin E. In multivariable-polytomous-logistic regression analysis, both MCI and AD cases had 85% lower odds to be in the highest tertile of total tocopherols and total vitamin E, and they were, respectively, 92% and 94% less likely to be in the highest tertile of total tocotrienols than the lowest tertile. Further, both disorders were associated with increased vitamin E damage. Low plasma tocopherols and tocotrienols levels are associated with increased odds of MCI and AD.
  •  
5.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
6.
  • Shi, Liu, et al. (författare)
  • Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 77:3, s. 1353-1368
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677).We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts.Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
  •  
7.
  • Simrén, Joel, 1996, et al. (författare)
  • The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease
  • 2021
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 17:7, s. 1145-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: This study investigated the diagnostic and disease-monitoring potential of plasma biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia and cognitively unimpaired (CU) individuals. Methods: Plasma was analyzed using Simoa assays from 99 CU, 107 MCI, and 103 AD dementia participants. Results: Phosphorylated-tau181 (P-tau181), neurofilament light, amyloid-β (Aβ42/40), Total-tau and Glial fibrillary acidic protein were altered in AD dementia but P-tau181 significantly outperformed all biomarkers in differentiating AD dementia from CU (area under the curve [AUC] = 0.91). P-tau181 was increased in MCI converters compared to non-converters. Higher P-tau181 was associated with steeper cognitive decline and gray matter loss in temporal regions. Longitudinal change of P-tau181 was strongly associated with gray matter loss in the full sample and with Aβ measures in CU individuals. Discussion: P-tau181 detected AD at MCI and dementia stages and was strongly associated with cognitive decline and gray matter loss. These findings highlight the potential value of plasma P-tau181 as a non-invasive and cost-effective diagnostic and prognostic biomarker in AD.
  •  
8.
  • van Maurik, Ingrid S., et al. (författare)
  • Biomarker-based prognosis for people with mild cognitive impairment (ABIDE) : a modelling study
  • 2019
  • Ingår i: Lancet Neurology. - : The Lancet Publishing Group. - 1474-4422 .- 1474-4465. ; 18:11, s. 1034-1044
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Biomarker-based risk predictions of dementia in people with mild cognitive impairment are highly relevant for care planning and to select patients for treatment when disease-modifying drugs become available. We aimed to establish robust prediction models of disease progression in people at risk of dementia.METHODS: In this modelling study, we included people with mild cognitive impairment (MCI) from single-centre and multicentre cohorts in Europe and North America: the European Medical Information Framework for Alzheimer's Disease (EMIF-AD; n=883), Alzheimer's Disease Neuroimaging Initiative (ADNI; n=829), Amsterdam Dementia Cohort (ADC; n=666), and the Swedish BioFINDER study (n=233). Inclusion criteria were a baseline diagnosis of MCI, at least 6 months of follow-up, and availability of a baseline Mini-Mental State Examination (MMSE) and MRI or CSF biomarker assessment. The primary endpoint was clinical progression to any type of dementia. We evaluated performance of previously developed risk prediction models-a demographics model, a hippocampal volume model, and a CSF biomarkers model-by evaluating them across cohorts, incorporating different biomarker measurement methods, and determining prognostic performance with Harrell's C statistic. We then updated the models by re-estimating parameters with and without centre-specific effects and evaluated model calibration by comparing observed and expected survival. Finally, we constructed a model combining markers for amyloid deposition, tauopathy, and neurodegeneration (ATN), in accordance with the National Institute on Aging and Alzheimer's Association research framework.FINDINGS: We included all 2611 individuals with MCI in the four cohorts, 1007 (39%) of whom progressed to dementia. The validated demographics model (Harrell's C 0·62, 95% CI 0·59-0·65), validated hippocampal volume model (0·67, 0·62-0·72), and updated CSF biomarkers model (0·72, 0·68-0·74) had adequate prognostic performance across cohorts and were well calibrated. The newly constructed ATN model had the highest performance (0·74, 0·71-0·76).INTERPRETATION: We generated risk models that are robust across cohorts, which adds to their potential clinical applicability. The models could aid clinicians in the interpretation of CSF biomarker and hippocampal volume results in individuals with MCI, and help research and clinical settings to prepare for a future of precision medicine in Alzheimer's disease. Future research should focus on the clinical utility of the models, particularly if their use affects participants' understanding, emotional wellbeing, and behaviour.
  •  
9.
  • Vos, Stephanie J. B., et al. (författare)
  • Prevalence and prognosis of Alzheimer's disease at the mild cognitive impairment stage
  • 2015
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 138:5, s. 1327-1338
  • Tidskriftsartikel (refereegranskat)abstract
    • Three sets of research criteria are available for diagnosis of Alzheimer's disease in subjects with mild cognitive impairment: the International Working Group-1, International Working Group-2, and National Institute of Aging-Alzheimer Association criteria. We compared the prevalence and prognosis of Alzheimer's disease at the mild cognitive impairment stage according to these criteria. Subjects with mild cognitive impairment (n = 1607), 766 of whom had both amyloid and neuronal injury markers, were recruited from 13 cohorts. We used cognitive test performance and available biomarkers to classify subjects as prodromal Alzheimer's disease according to International Working Group-1 and International Working Group-2 criteria and in the high Alzheimer's disease likelihood group, conflicting biomarker groups (isolated amyloid pathology or suspected non-Alzheimer pathophysiology), and low Alzheimer's disease likelihood group according to the National Institute of Ageing-Alzheimer Association criteria. Outcome measures were the proportion of subjects with Alzheimer's disease at the mild cognitive impairment stage and progression to Alzheimer's disease-type dementia. We performed survival analyses using Cox proportional hazards models. According to the International Working Group-1 criteria, 850 (53%) subjects had prodromal Alzheimer's disease. Their 3-year progression rate to Alzheimer's disease-type dementia was 50% compared to 21% for subjects without prodromal Alzheimer's disease. According to the International Working Group-2 criteria, 308 (40%) subjects had prodromal Alzheimer's disease. Their 3-year progression rate to Alzheimer's disease-type dementia was 61% compared to 22% for subjects without prodromal Alzheimer's disease. According to the National Institute of Ageing-Alzheimer Association criteria, 353 (46%) subjects were in the high Alzheimer's disease likelihood group, 49 (6%) in the isolated amyloid pathology group, 220 (29%) in the suspected non-Alzheimer pathophysiology group, and 144 (19%) in the low Alzheimer's disease likelihood group. The 3-year progression rate to Alzheimer's disease-type dementia was 59% in the high Alzheimer's disease likelihood group, 22% in the isolated amyloid pathology group, 24% in the suspected non-Alzheimer pathophysiology group, and 5% in the low Alzheimer's disease likelihood group. Our findings support the use of the proposed research criteria to identify Alzheimer's disease at the mild cognitive impairment stage. In clinical settings, the use of both amyloid and neuronal injury markers as proposed by the National Institute of Ageing-Alzheimer Association criteria offers the most accurate prognosis. For clinical trials, selection of subjects in the National Institute of Ageing-Alzheimer Association high Alzheimer's disease likelihood group or the International Working Group-2 prodromal Alzheimer's disease group could be considered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (9)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Tsolaki, Magda (9)
Soininen, Hilkka (9)
Westman, Eric (5)
Hansson, Oskar (3)
Scheltens, Philip (3)
Frisoni, Giovanni B. (3)
visa fler...
Rietschel, Marcella (3)
Franke, Barbara (2)
Wahlund, Lars-Olof (2)
Wallin, Anders, 1950 (2)
Ching, Christopher R ... (2)
Agartz, Ingrid (2)
Brouwer, Rachel M (2)
Melle, Ingrid (2)
Westlye, Lars T (2)
Thompson, Paul M (2)
Andreassen, Ole A (2)
Andersson, Micael (2)
Axelsson, Tomas (2)
van der Wee, Nic J. ... (2)
Fratiglioni, Laura (2)
Ikram, M. Arfan (2)
Teunissen, Charlotte ... (2)
Amin, Najaf (2)
van Duijn, Cornelia ... (2)
Chen, Qiang (2)
Barkhof, Frederik (2)
Rotter, Jerome I. (2)
Weinberger, Daniel R (2)
Bäckman, Lars (2)
Ashton, Nicholas J. (2)
de Geus, Eco J. C. (2)
Martin, Nicholas G. (2)
Boomsma, Dorret I. (2)
Heslenfeld, Dirk J. (2)
Kornhuber, Johannes (2)
van der Meer, Dennis (2)
Djurovic, Srdjan (2)
Doan, Nhat Trung (2)
Meyer-Lindenberg, An ... (2)
Thalamuthu, Anbupala ... (2)
Cichon, Sven (2)
Wiltfang, Jens (2)
Schofield, Peter R (2)
Schmidt, Reinhold (2)
Schmidt, Helena (2)
Deary, Ian J (2)
Mattheisen, Manuel (2)
Engelborghs, Sebasti ... (2)
Wassink, Thomas H (2)
visa färre...
Lärosäte
Karolinska Institutet (8)
Lunds universitet (4)
Göteborgs universitet (3)
Uppsala universitet (3)
Stockholms universitet (3)
Örebro universitet (3)
visa fler...
Umeå universitet (2)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy