SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Slate Jon) "

Sökning: WFRF:(Slate Jon)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonnet, Timothee, et al. (författare)
  • Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals
  • 2022
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 376:6596, s. 1012-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.
  •  
2.
  • Dawson, Deborah A., et al. (författare)
  • Gene order and recombination rate in homologous chromosome regions of the chicken and a passerine bird
  • 2007
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 24:7, s. 1537-1552
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of inicrosatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and that the chicken linkage map may not be suitable, in terms of genetic distances, as a model for all bird species.
  •  
3.
  • Dawson, Deborah, et al. (författare)
  • High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species
  • 2013
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 14:1, s. 176-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Microsatellites are widely used for many genetic studies. In contrast to single nucleotide polymorphism (SNP) and genotyping-by-sequencing methods, they are readily typed in samples of low DNA quality/concentration (e.g. museum/non-invasive samples), and enable the quick, cheap identification of species, hybrids, clones and ploidy. Microsatellites also have the highest cross-species utility of all types of markers used for genotyping, but, despite this, when isolated from a single species, only a relatively small proportion will be of utility. Marker development of any type requires skill and time. The availability of sufficient "off-the-shelf" markers that are suitable for genotypinga wide range of species would not only save resources but also uniquely enablenew comparisons of diversity among taxa at the same set of loci. No other marker types are capable of enabling this. We therefore developed a set of avianmicrosatellite markers with enhanced cross-species utility. Results: We selected highly-conserved sequences with a high number of repeat units in both of two genetically distant species. Twenty-four primer sets were designed from homologous sequences that possessed at least eight repeat units in both the zebra finch (Taeniopygia guttata) and chicken (Gallus gallus). Each primer sequence was a complete match to zebra finch and, after accounting for degenerate bases, at least 86% similar to chicken. We assessed primer-set utilityby genotyping individuals belonging to eight passerine and four non-passerinespecies. The majority of the new Conserved Avian Microsatellite (CAM) markersamplified in all 12 species tested (on average, 94% in passerines and 95% in non-passerines). This new marker set is of especially high utility in passerines, with amean 68% of loci polymorphic per species, compared with 42% in non-passerinespecies. Conclusions: When combined with previously described conserved loci, this new set of conserved markers will not only reduce the necessity and expense ofmicrosatellite isolation for a wide range of genetic studies, including avianparentage and population analyses, but will also now enable comparisons ofgenetic diversity among different species (and populations) at the same set of loci, with no or reduced bias. Finally, the approach used here can be applied to other taxa in which appropriate genome sequences are available.
  •  
4.
  • Ekblom, Robert, et al. (författare)
  • Comparison between Normalised and Unnormalised 454-Sequencing Libraries for Small-Scale RNA-Seq Studies
  • 2012
  • Ingår i: Comparative and functional genomics. - : Hindawi Limited. - 1531-6912 .- 1532-6268. ; 2012, s. 281693-
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing of transcriptomes (RNA-Seq) is being used increasingly in studies of nonmodel organisms. Here, we evaluate the effectiveness of normalising cDNA libraries prior to sequencing in a small-scale study of the zebra finch. We find that assemblies produced from normalised libraries had a larger number of contigs but used fewer reads compared to unnormalised libraries. Considerably more genes were also detected using the contigs produced from normalised cDNA, and microsatellite discovery was up to 73% more efficient in these. There was a positive correlation between the detected expression level of genes in normalised and unnormalised cDNA, and there was no difference in the number of genes identified as being differentially expressed between blood and spleen for the normalised and unnormalised libraries. We conclude that normalised cDNA libraries are preferable for many applications of RNA-Seq and that these can also be used in quantitative gene expression studies.
  •  
5.
  • Ekblom, Robert, et al. (författare)
  • Digital gene expression analysis of the zebra finch genome
  • 2010
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 11, s. 219-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results: Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions: Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates.
  •  
6.
  • Ekblom, Robert, et al. (författare)
  • Evolutionary Analysis and Expression Profiling of Zebra Finch Immune Genes
  • 2010
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 2, s. 781-790
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes of the immune system are generally considered to evolve rapidly due to host-parasite coevolution. They are therefore of great interest in evolutionary biology and molecular ecology. In this study, we manually annotated 144 avian immune genes from the zebra finch (Taeniopygia guttata) genome and conducted evolutionary analyses of these by comparing them with their orthologs in the chicken (Gallus gallus). Genes classified as immune receptors showed elevated d(N)/d(S) ratios compared with other classes of immune genes. Immune genes in general also appear to be evolving more rapidly than other genes, as inferred from a higher d(N)/d(S) ratio compared with the rest of the genome. Furthermore, ten genes (of 27) for which sequence data were available from at least three bird species showed evidence of positive selection acting on specific codons. From transcriptome data of eight different tissues, we found evidence for expression of 106 of the studied immune genes, with primary expression of most of these in bursa, blood, and spleen. These immune-related genes showed a more tissue-specific expression pattern than other genes in the zebra finch genome. Several of the avian immune genes investigated here provide strong candidates for in-depth studies of molecular adaptation in birds.
  •  
7.
  • Ekblom, Robert, et al. (författare)
  • Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata)
  • 2011
  • Ingår i: Immunogenetics. - : Springer Science and Business Media LLC. - 0093-7711 .- 1432-1211. ; 63:8, s. 523-530
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes of the major histocompatibility complex (MHC) have received much attention in immunology, genetics, and ecology because they are highly polymorphic and play important roles in parasite resistance and mate choice. Until recently, the MHC of passerine birds was not well-described. However, the genome sequencing of the zebra finch (Taeniopygia guttata) has partially redressed this gap in our knowledge of avian MHC genes. Here, we contribute further to the understanding of the zebra finch MHC organization by mapping SNPs within or close to known MHC genes in the zebra finch genome. MHC class I and IIB genes were both mapped to zebra finch chromosome 16, and there was no evidence that MHC class I genes are located on chromosome 22 (as suggested by the genome assembly). We confirm the location in the MHC region on chromosome 16 for several other genes (BRD2, FLOT1, TRIM7.2, GNB2L1, and CSNK2B). Two of these (CSNK2B and FLOT1) have not previously been mapped in any other bird species. In line with previous results, we also find that orthologs to the immune-related genes B-NK and CLEC2D, which are part of the MHC region in chicken, are situated on zebra finch chromosome Z and not among other MHC genes in the zebra finch.
  •  
8.
  • Hagen, Ingerid J., et al. (författare)
  • A genome-wide linkage map for the house sparrow (Passer domesticus) provides insights into the evolutionary history of the avian genome
  • 2020
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 20:2, s. 544-559
  • Tidskriftsartikel (refereegranskat)abstract
    • The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.
  •  
9.
  • Radersma, Reinder, et al. (författare)
  • Social and spatial effects on genetic variation between foraging flocks in a wild bird population
  • 2017
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083. ; 26:20, s. 5807-5819
  • Tidskriftsartikel (refereegranskat)abstract
    • Social interactions are rarely random. In some instances, animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics, respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection. Here, we investigate the link between social interactions and allele frequencies in foraging flocks of great tits (Parus major) over three consecutive years. We constructed co-occurrence networks which explicitly described the splitting and merging of 85,602 flocks through time (fission-fusion dynamics), at 60 feeding sites. Of the 1,711 birds in those flocks, we genotyped 962 individuals at 4,701 autosomal single nucleotide polymorphisms (SNPs). By combining genomewide genotyping with repeated field observations of the same individuals, we were able to investigate links between social structure and allele frequencies at a much finer scale than was previously possible. We explicitly accounted for potential spatial effects underlying genetic structure at the population level. We modelled social structure and spatial configuration of great tit fission-fusion dynamics with eigenvector maps. Variance partitioning revealed that allele frequencies were strongly affected by group fidelity (explaining 27%-45% of variance) as individuals tended to maintain associations with the same conspecifics. These conspecifics were genetically more dissimilar than expected, shown by genomewide heterophily for pure social (i.e., space-independent) grouping preferences. Genomewide homophily was linked to spatial configuration, indicating spatial segregation of genotypes. We did not find evidence for homophily or heterophily for putative socially relevant candidate genes or any other SNP markers. Together, these results demonstrate the importance of distinguishing social and spatial processes in determining population structure.
  •  
10.
  • Stapley, Jessica, et al. (författare)
  • Adaptation genomics : the next generation
  • 2010
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 25:12, s. 705-712
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that( have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic: variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy