SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Volkov P) srt2:(2020-2021);srt2:(2020)"

Search: WFRF:(Volkov P) > (2020-2021) > (2020)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahdida, C., et al. (author)
  • The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
  • 2020
  • In: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 15:01
  • Journal article (peer-reviewed)abstract
    • The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
  •  
2.
  • Ahdida, C., et al. (author)
  • Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
  • 2020
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:3
  • Journal article (peer-reviewed)abstract
    • The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27 +/- 0.07)x1011protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.
  •  
3.
  • Syndikus, I., et al. (author)
  • Probing the Z = 6 spin-orbit shell gap with (p,2p) quasi-free scattering reactions
  • 2020
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 809
  • Journal article (peer-reviewed)abstract
    • The evolution of the traditional nuclear magic numbers away from the valley of stability is an active field of research. Experimental efforts focus on providing key spectroscopic information that will shed light into the structure of exotic nuclei and understanding the driving mechanism behind the shell evolution. In this work, we investigate the Z=6 spin-orbit shell gap towards the neutron dripline. To do so, we employed NA(p,2p)CA−1 quasi-free scattering reactions to measure the proton component of the 21+ state of 16,18,20C. The experimental findings support the notion of a moderate reduction of the proton 1p1/2−1p3/2 spin-orbit splitting, at variance to recent claims for a prevalent Z=6 magic number towards the neutron dripline.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view