SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alcolea D) ;pers:(Bujarrabal V.);pers:(Matsuura M.)"

Sökning: WFRF:(Alcolea D) > Bujarrabal V. > Matsuura M.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Marco, O., et al. (författare)
  • The messy death of a multiple star system and the resulting planetary nebula as observed by JWST
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:12, s. 1421-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary nebulae—the ejected envelopes of red giant stars—provide us with a history of the last, mass-losing phases of 90% of stars initially more massive than the Sun. Here we analyse images of the planetary nebula NGC 3132 from the James Webb Space Telescope (JWST) Early Release Observations. A structured, extended hydrogen halo surrounding an ionized central bubble is imprinted with spiral structures, probably shaped by a low-mass companion orbiting the central star at about 40–60 au. The images also reveal a mid-infrared excess at the central star, interpreted as a dusty disk, which is indicative of an interaction with another closer companion. Including the previously known A-type visual companion, the progenitor of the NGC 3132 planetary nebula must have been at least a stellar quartet. The JWST images allow us to generate a model of the illumination, ionization and hydrodynamics of the molecular halo, demonstrating the power of JWST to investigate complex stellar outflows. Furthermore, new measurements of the A-type visual companion allow us to derive the value for the mass of the progenitor of a central star with excellent precision: 2.86 ± 0.06 M⊙. These results serve as pathfinders for future JWST observations of planetary nebulae, providing unique insight into fundamental astrophysical processes including colliding winds and binary star interactions, with implications for supernovae and gravitational-wave systems.
  •  
2.
  • Khouri, T., et al. (författare)
  • The wind of W Hydrae as seen by Herschel II. The molecular envelope of W Hydrae
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. Art. no. A67-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The evolution of low- and intermediate-mass stars on the asymptotic giant branch (AGB) is mainly controlled by the rate at which these stars lose mass in a stellar wind. Understanding the driving mechanism and strength of the stellar winds of AGB stars and the processes enriching their surfaces with products of nucleosynthesis are paramount to constraining AGB evolution and predicting the chemical evolution of galaxies. Aims. In a previous paper we have constrained the structure of the outflowing envelope of W Hya using spectral lines of the (CO)-C-12 molecule. Here we broaden this study by including an extensive set of H2O and (SiO)-Si-28 lines. It is the first time such a comprehensive study is performed for this source. The oxygen isotopic ratios and the (SiO)-Si-28 abundance profile can be connected to the initial stellar mass and to crucial aspects of dust formation at the base of the stellar wind, respectively. Methods. We model the molecular emission observed by the three instruments on board Herschel Space Observatory using a state-of-the-art molecular excitation and radiative transfer code. We also account for the dust radiation field in our calculations. Results. We find an H2O ortho-to-para ratio of 2.5(-1.0)(+2.5), consistent with what is expected for an AGB wind. The O-16/O-17 ratio indicates that W Hya has an initial mass of about 1.5 M-circle dot. Although the ortho-and para-H2O lines observed by HIFI appear to trace gas of slightly different physical properties, we find that a turbulence velocity of 0.7 +/- 0.1 km s(-1) fits the HIFI lines of both spin isomers and those of (SiO)-Si-28 well. Conclusions. The modelling of H2O and (SiO)-Si-28 confirms the properties of the envelope model of W Hya, as derived from (CO)-C-12 lines, and allows us to constrain the turbulence velocity. The ortho-and para-(H2O)-O-16 and (SiO)-Si-28 abundances relative to H-2 are (6(2)(+3)) x 10(-4), (3(-1)(+2)) x 10(-4), and (3.3 +/- 0.8) x 10(-5), respectively, in agreement with expectations for oxygen-rich AGB outflows. Assuming a solar silicon-to-carbon ratio, the (SiO)-Si-28 line emission model is consistent with about one-third of the silicon atoms being locked up in dust particles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy