SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Pettersson Håkan 1962 )
 

Sökning: WFRF:(Pettersson Håkan 1962 ) > Tailoring the Optic...

Tailoring the Optical Response of III-V Nanowire Arrays

Aghaeipour, Mahtab (författare)
Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Fasta tillståndets fysik,Fysiska institutionen,Institutioner vid LTH,Other operations, LTH,Faculty of Engineering, LTH,Solid State Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH,Lund University, Lund, Sweden
Pettersson, Håkan, Prof. 1962- (preses)
Högskolan i Halmstad, Halmstad Embedded and Intelligent Systems Research (EIS)
Pistol, Mats-Erik, Prof. (preses)
Lund University, Lund, Sweden
visa fler...
Anttu, Nicklas, Dr. (preses)
Lund University, Lund, Sweden
Samuelson, Lars, Prof. (preses)
Lund University, Lund, Sweden
Chang-Hasnain, Constance J., Prof. (opponent)
University of California, Berkeley, CA, USA
visa färre...
 (creator_code:org_t)
ISBN 9789177532774
Lund : Lund University, 2017
Engelska 63 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Semiconductor nanowires show a great deal of promise for applications in a wide range of important fields, including photovoltaics, biomedicine, and information technology. Developing these exciting applications is strongly dependent on understanding the fundamental properties of nanowires, such as their optical resonances and absorption spectra. In this thesis we explore optical absorption spectra of arrays of vertical III-V nanowires with a special emphasis on structures optimized to enhance absorption in the solar spectrum. First, we analyze experimentally determined absorption spectra of both indium phosphide (InP) and gallium phosphide (GaP) nanowire arrays. The study provides an intuitive understanding of how the observed absorption resonances in the nanowires may be tuned as a function of their geometrical parameters and crystal structure. As a consequence, the spectral position of absorption resonances can be precisely controlled through the nanowire diameter. However, the results highlight how the blue-shift in the optical absorption resonances as the diameter of the nanowires decreases comes to a halt at low diameters. The stop point is related to the behavior of the refractive indices of the nanowires. The wavelength of the stop is different for nanowire polytypes of similar dimensions due to differences in their refractive indices. We then present a theoretical argument that it is important to consider symmetry properties when tailoring the optical modes excited in the nanowires for enhanced absorption. We show that absorption spectra may be enhanced compared to vertical nanowires at normal incidence by tilting the nanowires with normal incidence light, or by using off-normal incidence with vertical nanowires. This is because additional optical modes inside the nanowires are excited when the symmetry is broken. Looking forward to omnidirectional applications, we consider branched nanowires as a way to enhance the absorption spectra at normal incidence by taking advantage of simultaneous excitation of the spectrally different optical modes in the branches and the stems. Third, we describe in theoretical terms how integrating distributed Bragg reflectors (DBRs) with the nanowires can improve absorption spectra compared to conventional nanowires. DBRs provide a way to employ light trapping mechanisms which increases the optical path length of the excited modes and thereby improves the absorption of the excited modes. At normal incidence, DBR-nanowires improve the absorption efficiency to 78%, compared to 72% for conventional nanowires. We show that the efficiency is increased to 85% for an off-normal incident angle of 50˚. Overall, our results show that studies of optical resonances in nanowires that take the light-matter interaction into account provide opportunities to develop novel optical and optoelectronic functionalities in nanoscience and nanotechnology.

Ämnesord

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Nanoteknik -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology -- Nano-technology (hsv//eng)

Nyckelord

III-V nanowires
absorption
optical modes
photovoltaics
III-V nanowires, absorption, optical modes, photovoltaics
Fysicumarkivet A:2017:Aghaeipour

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy