SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Extended search

mat:dok lärosäte:mau år:(2015)
 

Search: mat:dok lärosäte:mau år:(2015) > Phase transformatio...

Phase transformation and stability studies of the Zr-H system

Maimaitiyili, Tuerdi (author)
Lund University,Lunds universitet,Malmö högskola,Fakulteten för teknik och samhälle (TS),Materialteknik,Institutionen för maskinvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Materials Engineering,Department of Mechanical Engineering Sciences,Departments at LTH,Faculty of Engineering, LTH
Hallstadius, Lars, Dr (opponent)
Westinghouse Electric Company
 (creator_code:org_t)
ISBN 9789176235522
Institute for Educational Sciences, Lund University, Sweden, 2015
English 65 s.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Zirconium alloys are widely used in the nuclear industry because of their high strength, good corrosion resistance and low neutron absorption cross-section. Zirconium has a strong affinity for hydrogen, however, and if hydrogen concentration builds up, the material will gradually degrade. In one class of such hydrogen caused degradation, called hydride induced embrittlement, hydrogen chemically reacts with zirconium forming one, or several, crystal phases of zirconium hydride. These hydrides play a primary, but sometime not fully understood, role in crack initiation and propagation within these materials. Despite the fact that hydride induced embrittlement in zirconium have been studied for several decades, there are still some unresolved issues. It has been the aim of the research presented in this thesis to provide the research community with new and updated data of the hydrides themselves in order to aid further studies within the field of hydride induced embrittlement in general, and the mechanism of delayed hydride cracking in particular. To that end, the research presented here proceeded, in short, as follows: First, zirconium hydride powder, of well defined hydrogen concentration, was produced from commercial grade zirconium. This powder was subjected to heat treatment and the hydride phases were characterized both in situ and ex situ using neutron, synchrotron X-ray, and conventional laboratory X-ray based diffraction techniques. Next, most of the low-pressure zirconium hydride phases were produced under hydrogen/argon atmosphere from commercial grade zirconium powder. This process was simultaneously monitored and recorded in real time using synchrotron X-ray diffraction. These experiments have produced new data of the behavior of different hydride phases during thermal treatment and in situ hydrogenation. For the first time all commonly reported zirconium hydride phases and the complete transformation between two different hydride phases were recorded with a single experimental arrangement. The phase transformation between δ and ε zirconium hydride was recorded in detail and presented. Finally, the controversial γ zirconium hydride was observed both in situ and ex situ and the preparation route, its crystal structure, and formation mechanisms were analyzed and presented.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Keyword

Zirconium hydride
synchrotron X-ray diffraction
Nuclear materials
phase transformation
in-situ hydrogen charging
hydrogen related degradation
neutron diffraction
powder diffraction
Rietveld analysis
γ-ZrH
hydrogen embrittlement
zirconium hydride
γ-ZrH
synchrotron X-ray diffraction
neutron diffraction
hydrogen charging
in situ phase transformation
hydrogen embrittlement
hydrogen induced degradation

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Maimaitiyili, Tu ...
Hallstadius, Lar ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
By the university
Malmö University
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view