SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Vignon P.)
 

Sökning: WFRF:(Vignon P.) > Challenging and Imp...

Challenging and Improving the Simulation of Mid-Level Mixed-Phase Clouds Over the High-Latitude Southern Ocean

Vignon, É. (författare)
Alexander, S. P. (författare)
DeMott, P. J. (författare)
visa fler...
Sotiropoulou, Georgia (författare)
Stockholms universitet,Meteorologiska institutionen (MISU),Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Gerber, F. (författare)
Hill, T. C. J. (författare)
Marchand, R. (författare)
Nenes, A. (författare)
Berne, A. (författare)
visa färre...
 (creator_code:org_t)
2021
2021
Engelska.
Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 126:7
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Climate models exhibit major radiative biases over the Southern Ocean owing to a poor representation of mixed-phase clouds. This study uses the remote-sensing dataset from the Measurements of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS) campaign to assess the ability of the Weather Research and Forecasting (WRF) model to reproduce frontal clouds off Antarctica. It focuses on the modeling of thin mid-level supercooled liquid water layers which precipitate ice. The standard version of WRF produces almost fully glaciated clouds and cannot reproduce cloud top turbulence. Our work demonstrates the importance of adapting the ice nucleation parameterization to the pristine austral atmosphere to reproduce the supercooled liquid layers. Once simulated, droplets significantly impact the cloud radiative effect by increasing downwelling longwave fluxes and decreasing downwelling shortwave fluxes at the surface. The net radiative effect is a warming of snow and ice covered surfaces and a cooling of the ocean. Despite improvements in our simulations, the local turbulent circulation related to cloud-top radiative cooling is not properly reproduced, advocating for the need to develop a parameterization for top-down convection to capture the turbulence-microphysics interplay at cloud top. Plain Language Summary Among the major shortcomings of climate models is a poor representation of clouds over the Southern Ocean. Thanks to new measurements from the Measurements of Aerosols, Radiation and Clouds over the Southern Ocean campaign that took place aboard the Aurora Australia ice breaker, we can now better assess the ability of models to represent clouds off Antarctica. In particular, we focus here on clouds that are mostly composed of ice crystals but that are topped by a thin layer of so-called supercooled liquid droplets that form at temperatures below zero Celsius. While the standard version of the model produces clouds composed only of ice, we show that by adapting the formulation of ice crystal formation to the very pristine atmospheric conditions peculiar to the Southern Ocean it is possible to successfully reproduce thin layers of supercooled liquid droplets observed in mixed-phase clouds. The latter significantly changes how much sunlight these clouds reflect to space, which is critical to understanding the climate. Compared to ice crystals, liquid droplets tend to reflect more solar energy toward space and at the same time, they enhance the cloud infrared emission toward the surface of the Antarctic ice sheet.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)

Nyckelord

Antarctica
ice nuclei particles
microphysics
mixed-phase clouds
Southern Ocean

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy