SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Extended search

LAR1:lu
 

Search: LAR1:lu > Linnaeus University > (2007) > Jones David L. > Phosphatase activit...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Fransson, Ann-MariLund University,Lunds universitet,Biologiska institutionen,Naturvetenskapliga fakulteten,Department of Biology,Faculty of Science,Lund University, Sweden (author)

Phosphatase activity does not limit the microbial use of low molecular weight organic-P substrates in soil

  • Article/chapterEnglish2007

Publisher, publication year, extent ...

  • Elsevier BV,2007

Numbers

  • LIBRIS-ID:oai:lup.lub.lu.se:60b0cf93-90a4-4e84-b5a4-6a2e422dce76
  • https://lup.lub.lu.se/record/666638URI
  • https://doi.org/10.1016/j.soilbio.2006.11.014DOI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-120573URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:art swepub-publicationtype
  • Subject category:ref swepub-contenttype

Notes

  • Plant roots and soil microorganisms contain significant quantities of low molecular weight (MW) phosphorylated nucleosides and sugars. Consequently.. upon death these can represent a significant input of organic-P to the soil. Some of these organic-P substrates must first be dephosphorylated by phosphatases before being assimilated by the soil microbial community while others can be taken up directly from soil solution. To determine whether sorption or phosphatase activity was limiting the bioavailability of low MW organic-P in soil we compared the microbial uptake and C mineralization of a range of C-14-labeled organic-P substrates [glucose-6-phosphate, adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP)] to that of the parent compounds (adenosine and glucose). In a fertile grassland soil we showed that at low organic-P substrate concentrations (< 0.5 mM) phosphatase activity did not limit microbial uptake or mineralization in comparison to their non-phosphorylated counterparts. However, at high substrate concentrations (1-10 mM) the mineralization of the organic-P compounds was significantly lower than that of the nonphosphorylated compounds suggesting that phosphatase activity or microbial transporter capacity limited bioavailability. Sorption to the solid phase followed the series glucose < adenosine < G-6-P < AMP < ADP=ATP. However, sorption of the organic-P compounds to the solid phase did not appear to greatly affect bioavailability. The high adenosine mineralization capacity of the microbial biomass suggests that nucleosides may represent a significant source of C and N to the soil microbial biomass. We conclude that at low organic-P substrate concentrations typical of those in soil, neither phosphatase activity nor sorption greatly limits their bioavailability.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Jones, David LUniversity of Wales, UK (author)
  • Biologiska institutionenNaturvetenskapliga fakulteten (creator_code:org_t)

Related titles

  • In:Soil Biology & Biochemistry: Elsevier BV39:5, s. 1213-12170038-07171879-3428

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Fransson, Ann-Ma ...
Jones, David L
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Ecology
AGRICULTURAL SCIENCES
AGRICULTURAL SCI ...
and Agriculture Fore ...
and Soil Science
Articles in the publication
Soil Biology & B ...
By the university
Lund University
Linnaeus University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view