SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Lindström Tobias)
 

Sökning: WFRF:(Lindström Tobias) > Electrochemically C...

Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation

Benselfelt, Tobias (författare)
KTH Royal Inst Technol, Sweden,Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden
Shakya, Jyoti (författare)
KTH Royal Inst Technol, Sweden,Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden
Rothemund, Philipp (författare)
Max Planck Inst Intelligent Syst, Germany,Robotic Materials Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany
visa fler...
Lindström, Stefan (författare)
Linköpings universitet,Mekanik och hållfasthetslära,Tekniska fakulteten,Department of Management and Engineering Division of Solid Mechanics Linköping University Linköping 58183 Sweden
Piper, Andrew (författare)
KTH Royal Inst Technol, Sweden,Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden
Winkler, Thomas E. (författare)
Tech Univ Carolo Wilhelmina Braunschweig, Germany; Tech Univ Carolo Wilhelmina Braunschweig, Germany,Institute of Microtechnology & Center of Pharmaceutical Engineering Technische Universität Braunschweig 38106 Braunschweig Germany
Hajian, Alireza (författare)
KTH Royal Inst Technol, Sweden,Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden
Wagberg, Lars (författare)
KTH Royal Inst Technol, Sweden,Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden
Keplinger, Christoph (författare)
Max Planck Inst Intelligent Syst, Germany; Univ Colorado, CO 80309 USA; Univ Colorado, CO 80309 USA,Robotic Materials Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany;Paul M. Rady Department of Mechanical Engineering University of Colorado Boulder CO 80309 USA;Materials Science and Engineering Program University of Colorado Boulder CO 80309 USA
Hamedi, Mahiar Max (författare)
KTH Royal Inst Technol, Sweden,Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden
visa färre...
 (creator_code:org_t)
WILEY-V C H VERLAG GMBH, 2023
2023
Engelska.
Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 35:45
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The unique properties of hydrogels enable the design of life-like soft intelligent systems. However, stimuli-responsive hydrogels still suffer from limited actuation control. Direct electronic control of electronically conductive hydrogels can solve this challenge and allow direct integration with modern electronic systems. An electrochemically controlled nanowire composite hydrogel with high in-plane conductivity that stimulates a uniaxial electrochemical osmotic expansion is demonstrated. This materials system allows precisely controlled shape-morphing at only -1 V, where capacitive charging of the hydrogel bulk leads to a large uniaxial expansion of up to 300%, caused by the ingress of & AP;700 water molecules per electron-ion pair. The material retains its state when turned off, which is ideal for electrotunable membranes as the inherent coupling between the expansion and mesoporosity enables electronic control of permeability for adaptive separation, fractionation, and distribution. Used as electrochemical osmotic hydrogel actuators, they achieve an electroactive pressure of up to 0.7 MPa (1.4 MPa vs dry) and a work density of & AP;150 kJ m-3 (2 MJ m-3 vs dry). This new materials system paves the way to integrate actuation, sensing, and controlled permeation into advanced soft intelligent systems. The unique properties of hydrogels enable the design of life-like soft intelligent systems. This work demonstrates how the swelling of hydrogels from cellulose nanofibrils and carbon nanotubes can be electrochemically controlled to achieve electrochemical osmotic actuation. This new materials system paves the way for integrated actuation, sensing, and controlled permeation in electrotunable separation membranes or soft actuators.image

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)
NATURVETENSKAP  -- Kemi -- Polymerkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Polymer Chemistry (hsv//eng)

Nyckelord

electrochemical actuation; electronic actuators; hydrogels; nanowires; osmotic pressure; tunable membranes

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy