SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Asensio Torres Ruben)
 

Sökning: WFRF:(Asensio Torres Ruben) > High-contrast imagi...

High-contrast imaging of low-mass companions and debris disks

Asensio Torres, Ruben, 1990- (författare)
Stockholms universitet,Institutionen för astronomi
Janson, Markus, Doctor (preses)
Stockholms universitet,Institutionen för astronomi
Mohanty, Subhanjoy, Doctor (opponent)
Department of Physics, Imperial College London, United Kingdom
 (creator_code:org_t)
ISBN 9789177975588
Stockholm : Department of Astronomy, Stockholm University, 2019
Engelska 74 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • The search for exoplanets, i.e., planets orbiting other stars than the Sun, is a relatively new research field, but has already established itself as one of the most prolific and intriguing areas of astronomy. By now we are in a situation where the focus is not only on finding companions to stars, but also on characterising their atmospheres and physical properties, which overall allows us to put our Solar System into context. In the near future, these efforts could potentially lead to the first confirmation of a life-bearing planet besides the Earth. The great majority of these exoplanet studies have been carried out indirectly, where the presence and characterisation of the companions are inferred solely from the observation of the host star. In the last decade, however, high-contrast direct imaging has been continuously developed to get rid of the starlight and reveal the existence of low-mass companions. Although this technique is currently limited to giant planets orbiting at large separations, it is able to directly detect the light emitted or scattered off the planet’s atmosphere at high signal to noise, which makes it the most promising planet-hunting method to characterise new worlds. Moreover, its capability to image faint objects close to the parent star allows for not only the detection of planetary-mass companions, but also low-mass stars, brown dwarfs, and circumstellar disks where planet formation takes place. This opens up a broad range of science cases where direct observations can be used to understand planet formation, atmospheric physics and stellar evolution.      In this PhD thesis I provide an up-to-date introduction to the basis of the direct imaging technique, and explain the star and planet formation mechanisms. Three publications are attached to this introduction, each of them dealing with distinct science cases that can be  assessed with high-contrast observations. In Paper I we resolve and model the aftermath of star formation, the so-called debris disk phase analogue to the asteroid and Kuiper belts in our Solar System, around the HD 32297 star with Subaru/HiCIAO.  We reveal an edge-on disk and find the first indications of a double-ring scenario. We also present the first polarimetric study of this system, constraining the properties of the dust around the star.  In Paper II we focus on the planetary-mass regime, and conduct the first direct imaging survey searching for circumbinary planets orbiting tight binary systems (SPOTS: Search for Planets Orbiting Two Stars). We present the results of the observations of 62 targets with VLT/NaCo and VLT/SPHERE, and perform a statistical analysis on the findings, placing constraints on the population of giant planets and brown dwarfs on wide orbits. Finally, in Paper III we resolve a triple stellar system with the newly-commissioned SCExAO/CHARIS integral field spectrograph. Taking advantage of the coeval nature of the system and the different range of masses involved, we use the data to reaffirm a previously suggested isochronal age discrepancy between the low- and the intermediate-mass population of stars.

Ämnesord

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Nyckelord

Direct imaging
extrasolar planets
debris disks
planet formation
high angular resolution
Astronomy
astronomi

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy