SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-167700"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-167700" > A novel numerical a...

A novel numerical approach for imposing a temperature boundary condition at the borehole wall in borehole fields

Monzó, Patricia (författare)
KTH,Energiteknik
Mogensen, Palne (författare)
KTH,Energiteknik
Acuña, José (författare)
KTH,Energiteknik
visa fler...
Ruiz-Calvo, Félix (författare)
KTH,Energiteknik
Montagud, Carla M. (författare)
Instituto de Ingeniería Energética, Universitat Politécnica de Valéncia, Camino de vera s/n, 46022 Valencia, Spain
visa färre...
 (creator_code:org_t)
Elsevier BV, 2015
2015
Engelska.
Ingår i: Geothermics. - : Elsevier BV. - 0375-6505 .- 1879-3576. ; 56, s. 35-44
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The design of a borehole field should be based on a long-term simulation of its thermal response for the intended energy loads. A well-known method to evaluate the response is based on a pre-calculated dimensionless function, the g-function. When calculating g-functions, there are two commonly used approaches for treating the boundary condition at the borehole wall: a constant heat flux at every instant of time, or a uniform temperature at a constant total heat flow to the borehole field. This paper is focused on a new approach to model the thermal process of borehole fields; in particular with a precise representation of a uniform temperature boundary condition at the borehole wall. The main purpose of this model is to be used as a research tool to either generate g-functions for particular cases or handle situations that cannot be addressed by others methods. First, the almost constant temperature along the borehole heat exchanger in operation requires a boundary condition of essentially isothermal boreholes along the depth. In a common case, the borehole heat exchangers are connected in parallel, thus all boreholes should have the same temperature. Also, the total heat flow to the borehole field should be constant over time. For this purpose, a numerical model in which the boreholes are filled with a hypothetical highly conductive material has been built, reproducing the isothermal condition. By thermally interconnecting the boreholes, the equal temperature condition is satisfied. Finally, the specified total heat flow is fed into one spot at the highly conductive material. The model is validated by generating g-functions of some simple borehole field configurations. The g-functions present, in general, a good agreement with the existing solutions for a similar boundary condition. Moreover, the model is also tested against real experimental data from a 2. ×. 3 borehole field at an office building. The simulated daily fluid temperatures are compared with measured daily fluid temperatures for the sixth year of operation. The simulated values present, in general, a good agreement with the measured data. The results show that there are no significant differences with regard to the boundary conditions at the borehole wall, which for this specific case is due to the fact that the system is thermally balanced.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Nyckelord

Borehole
G-Function
Long-term performance
Uniform borehole temperature
Boundary conditions
Conductive materials
Enthalpy
Heat exchangers
Heat flux
Heat transfer
Isotherms
Office buildings
Walls (structural partitions)
Borehole heat exchangers
Borehole temperature
Constant temperature
G function
Isothermal conditions
Long term performance
Long term simulation
Temperature conditions
Boreholes
borehole geophysics
borehole logging
design
heat flow
numerical model
temperature
Calluna vulgaris

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy